I want to train the model given below. I am developing 1D CNN model in PyTorch. Usually we use dataloaders in PyTorch. But I am not using dataloaders for my implementation. I need guidance on how i can train my model in pytorch.
import torch
import torch.nn as nn
import torch.nn.functional as F
class CharCNN(nn.Module):
def __init__(self,num_labels=11):
super(CharCNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv1d(num_channels, depth_1, kernel_size=kernel_size_1, stride=stride_size),
nn.ReLU(),
nn.MaxPool1d(kernel_size=kernel_size_1, stride=stride_size),
nn.Dropout(0.1),
)
self.conv2 = nn.Sequential(
nn.Conv1d(depth_1, depth_2, kernel_size=kernel_size_2, stride=stride_size),
nn.ReLU(),
nn.MaxPool1d(kernel_size=kernel_size_2, stride=stride_size),
nn.Dropout(0.25)
)
self.fc1 = nn.Sequential(
nn.Linear(depth_2*kernel_size_2, num_hidden),
nn.ReLU(),
nn.Dropout(0.5)
)
self.fc2 = nn.Sequential(
nn.Linear(num_hidden, num_labels),
nn.ReLU(),
nn.Dropout(0.5)
)
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
# collapse
out = x.view(x.size(0), -1)
# linear layer
out = self.fc1(out)
# output layer
out = self.fc2(out)
#out = self.log_softmax(x,dim=1)
return out
I am training my network like this:
criterion = nn.CrossEntropyLoss()
opt = torch.optim.Adam(model.parameters(),lr=learning_rate)
for e in range(training_epochs):
if(train_on_gpu):
net.cuda()
train_losses = []
for batch in iterate_minibatches(train_x, train_y, batch_size):
x, y = batch
inputs, targets = torch.from_numpy(x), torch.from_numpy(y)
if(train_on_gpu):
inputs, targets = inputs.cuda(), targets.cuda()
opt.zero_grad()
output = model(inputs, batch_size)
loss = criterion(output, targets.long())
train_losses.append(loss.item())
loss.backward()
opt.step()
val_losses = []
accuracy=0
f1score=0
print("Epoch: {}/{}...".format(e+1, training_epochs),
"Train Loss: {:.4f}...".format(np.mean(train_losses)))
But i am getting the following error
TypeError Traceback (most recent call last)
<ipython-input-60-3a3df06ef2f8> in <module>
14 inputs, targets = inputs.cuda(), targets.cuda()
15 opt.zero_grad()
---> 16 output = model(inputs, batch_size)
17
18 loss = criterion(output, targets.long())
~\AppData\Local\Continuum\anaconda3\lib\site-packages\torch\nn\modules\module.py in __call__(self,
* input, **kwargs)
530 result = self._slow_forward(*input, **kwargs)
531 else:
--> 532 result = self.forward(*input, **kwargs)
533 for hook in self._forward_hooks.values():
534 hook_result = hook(self, input, result)
TypeError: forward() takes 2 positional arguments but 3 were given
Please guide me how i can resolve this issue.
The forward method of your model only takes one argument, but you are calling it with two arguments:
output = model(inputs, batch_size)
It should be:
output = model(inputs)
The time series data uses a 5 element window. The target is a rolling window of 5. The convolution 1d model receives a Sales tensor 3 dimensional structure containing all the sales for a certain duration of time (https://krzjoa.github.io/2019/12/28/pytorch-ts-v1.html) The kernel is set at 5 to match the moving window size. input and output are 1. The loss function is calculated over 1000 epochs. The prediction tensor is then converted to a numpy array and displayed comparing it to the actual moving average. I did find iterate_minibatches code but it does not work with time series data because the dimensions are different (32 target vs 36 source)
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
df=pd.read_csv('https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv')
#created a three dimensional tensor
#1. number of samples
#2. number of channels
#3. -1 means infer value from dimension
X=data.Sales.copy()
y=data.Sales.rolling(5).mean().copy()
net = nn.Conv1d(1, 1, 5, bias = False)
optimizer=optim.Adam(net.parameters(), lr=0.01) #l2
running_loss=0.0
X=data.Sales.copy()
y=data.Sales.rolling(5).mean().copy()
X_tensor = torch.Tensor(X).reshape(1, 1, -1)
print("Sales", X_tensor)
y=y[4:,].to_numpy()
y_tensor = torch.Tensor(y).reshape(1, 1, -1)
print("Avg", y_tensor)
ts_tensor = torch.Tensor(X).reshape(1, 1, -1)
kernel = [0.5, 0.5]
kernel_tensor = torch.Tensor(kernel).reshape(1, 1, -1)
print("Kernel", F.conv1d(ts_tensor, kernel_tensor))
for epoch in range(1000):
optimizer.zero_grad()
outputs=net(X_tensor)
#print("Outputs",outputs)
loss_value = torch.mean((outputs - y_tensor)**2)
loss_value.backward()
optimizer.step()
running_loss += loss_value.item()
if epoch % 100 == 0:
print('[%d] loss: %.3f' % (epoch, loss_value.item()))
print(net.weight.data.numpy())
prediction = (net(X_tensor).data).float()
prediction=(prediction.numpy().flatten())
data.Sales.plot()
plt.plot(prediction)
#actual moving average
data.Sales.plot()
plt.plot(y)
Related
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 3)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = NeuralNetwork()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, random_split
def UploadData(path, train):
#set up transforms for train and test datasets
train_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(), transforms.transforms.ToTensor()])
valid_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(), transforms.transforms.ToTensor()])
test_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor()])
#set up datasets from Image Folders
train_dataset = datasets.ImageFolder(path + '/train', transform=train_transforms)
valid_dataset = datasets.ImageFolder(path + '/validation', transform=valid_transforms)
test_dataset = datasets.ImageFolder(path + '/test', transform=test_transforms)
#set up dataloaders with batch size of 32
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
validloader = torch.utils.data.DataLoader(valid_dataset, batch_size=32, shuffle=True)
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True)
return trainloader, validloader, testloader
trainloader, validloader, testloader = UploadData("/home/lns/research/dataset", True)
epochs = 5
min_valid_loss = np.inf
for e in range(epochs):
train_loss = 0.0
for data, labels in trainloader:
# Transfer Data to GPU if available
if torch.cuda.is_available():
print("using GPU for data")
data, labels = data.cuda(), labels.cuda()
# Clear the gradients
optimizer.zero_grad()
# Forward Pass
target = net(data)
# Find the Loss
loss = criterion(target,labels)
# Calculate gradients
loss.backward()
# Update Weights
optimizer.step()
# Calculate Loss
train_loss += loss.item()
valid_loss = 0.0
model.eval() # Optional when not using Model Specific layer
for data, labels in validloader:
# Transfer Data to GPU if available
if torch.cuda.is_available():
print("using GPU for data")
data, labels = data.cuda(), labels.cuda()
# Forward Pass
target = net(data)
# Find the Loss
loss = criterion(target,labels)
# Calculate Loss
valid_loss += loss.item()
print('Epoch ',e+1, '\t\t Training Loss: ',train_loss / len(trainloader),' \t\t Validation Loss: ',valid_loss / len(validloader))
if min_valid_loss > valid_loss:
print("Validation Loss Decreased(",min_valid_loss,"--->",valid_loss,") \t Saving The Model")
min_valid_loss = valid_loss
# Saving State Dict
torch.save(net.state_dict(), '/home/lns/research/MODEL.pth')
After searching a lot i am asking for help. Can someone help me
understand why this error is occuring in backward propagation.
i followed pytorch cnn tutorail and geeksforgeeks tutorial
dataset is x ray images transformed into grayscale and resize to 255
Is my neural network is wrong or data is not processed correctly?
This is a size mismmatch between the output of your CNN and the number of neurons on on your first fully-connected layer. Because of missing padding, the number of elements when flattened is 16*4*4 i.e. 256 (and not 16*5*5):
self.fc1 = nn.Linear(256, 120)
Once modified, the model will run correctly:
>>> model = NeuralNetwork()
>>> model(torch.rand(1, 1, 28, 28)).shape
torch.Size([1, 3])
Alternatively, you can use an nn.LazyLinear which will deduce the in_feature argument during the very first inference based on its input shape.
self.fc1 = nn.LazyLinear(120)
I am new to Pytorch and am aiming to do an image classification task using a CNN based on the EMNIST dataset.
I read my data in as follows:
emnist = scipy.io.loadmat(DATA_DIR + '/emnist-letters.mat')
data = emnist ['dataset']
X_train = data ['train'][0, 0]['images'][0, 0]
X_train = X_train.reshape((-1,28,28), order='F')
y_train = data ['train'][0, 0]['labels'][0, 0]
X_test = data ['test'][0, 0]['images'][0, 0]
X_test = X_test.reshape((-1,28,28), order = 'F')
y_test = data ['test'][0, 0]['labels'][0, 0]
train_dataset = torch.utils.data.TensorDataset(torch.from_numpy(X_train), torch.from_numpy(y_train))
test_dataset = torch.utils.data.TensorDataset(torch.from_numpy(X_test), torch.from_numpy(y_test))
batch_size = 128
n_iters = 3000
num_epochs = n_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
Then, I found the following configurations (that I still have to adjust to fit to my data):
class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self).__init__()
# Convolution 1
self.cnn1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=0)
self.relu1 = nn.ReLU()
# Max pool 1
self.maxpool1 = nn.MaxPool2d(kernel_size=2)
# Convolution 2
self.cnn2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=0)
self.relu2 = nn.ReLU()
# Max pool 2
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
# Fully connected 1 (readout)
self.fc1 = nn.Linear(32 * 4 * 4, 10)
def forward(self, x):
# Convolution 1
out = self.cnn1(x)
out = self.relu1(out)
# Max pool 1
out = self.maxpool1(out)
# Convolution 2
out = self.cnn2(out)
out = self.relu2(out)
# Max pool 2
out = self.maxpool2(out)
# Resize
# Original size: (100, 32, 7, 7)
# out.size(0): 100
# New out size: (100, 32*7*7)
out = out.view(out.size(0), -1)
# Linear function (readout)
out = self.fc1(out)
return out
model = CNNModel()
criterion = nn.CrossEntropyLoss()
To train the model, I use the following code:
iter = 0
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Add a single channel dimension
# From: [batch_size, height, width]
# To: [batch_size, 1, height, width]
images = images.unsqueeze(1)
# Forward pass to get output/logits
outputs = model(images)
# Clear gradients w.r.t. parameters
optimizer.zero_grad()
# Forward pass to get output/logits
outputs = model(images)
# Calculate Loss: softmax --> cross entropy loss
loss = criterion(outputs, labels)
# Getting gradients w.r.t. parameters
loss.backward()
# Updating parameters
optimizer.step()
iter += 1
if iter % 500 == 0:
# Calculate Accuracy
correct = 0
total = 0
# Iterate through test dataset
for images, labels in test_loader:
images = images.unsqueeze(1)
# Forward pass only to get logits/output
outputs = model(images)
# Get predictions from the maximum value
_, predicted = torch.max(outputs.data, 1)
# Total number of labels
total += labels.size(0)
correct += (predicted == labels).sum()
accuracy = 100 * correct / total
# Print Loss
print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.data[0], accuracy))
However, when I run this, I get the following error:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-27-1fbdd53d1194> in <module>()
12
13 # Forward pass to get output/logits
---> 14 outputs = model(images)
15
16 # Clear gradients w.r.t. parameters
4 frames
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight)
348 _pair(0), self.dilation, self.groups)
349 return F.conv2d(input, weight, self.bias, self.stride,
--> 350 self.padding, self.dilation, self.groups)
351
352 def forward(self, input):
RuntimeError: value cannot be converted to type uint8_t without overflow: -0.0510302
I found this question already and think that the solution might work for me as well. However, I don't understand where in my code I can implement this.
What can I do to overcome this problem?
Ps.
I have used the following import statements:
import scipy .io
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets
from torch.autograd import Variable
import cv2
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import os
from PIL import Image
from PIL import ImageOps
from torchvision import datasets, transforms
from torch.autograd import Variable
import matplotlib.pyplot as plt
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
from torch.nn import Sequential
from torch.nn import Conv2d
from torch.nn import BatchNorm2d
from torch.nn import MaxPool2d
from torch.nn import ReLU
from torch.nn import Linear
What fixed my problem was replacing out = self.cnn1(x) with out = self.cnn1(x.float())
i am using this code earlier in Jupiter notebook it was not showing error but accuracy was veryless then i have tried the same code in google colab there it is showing error, please suggest some way to increase accuracy . i am trying to perform multilevel CNN for detecting leaf with downsampling of image
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1,32,2)
self.conv2 = nn.Conv2d(32,64,2)
self.conv2_bn = nn.BatchNorm2d(64)
x= torch.randn(256,256).view(-1,1,256,256)
self._to_linear = None
self.convs(x)
self.fc1= nn.Linear(self._to_linear, 512)
self.fc2 = nn.Linear(512,6)
def convs(self,x):
y=torch.nn.functional.interpolate(x, size=([128,128]), scale_factor=None, mode='nearest', align_corners=None)
z=torch.nn.functional.interpolate(x, size=([64,64]), scale_factor=None, mode='nearest', align_corners=None)
w=torch.nn.functional.interpolate(x, size=([32,32]), scale_factor=None, mode='nearest', align_corners=None)
# print(x[0].shape)
x= F.relu(self.conv1(x))
m = nn.ConstantPad2d(1,0)
x=m(x)
x = F.relu(F.max_pool2d(self.conv2_bn(self.conv2(x)), 2))
# print(x[0].shape)
y= F.relu(self.conv1(y))
m = nn.ConstantPad2d(1,0)
y=m(y)
y = F.relu(self.conv2_bn(self.conv2(y)), 2)
# print(y[0].shape)
CAT_1=torch.cat((x,y),1)
CAT_1=F.max_pool2d(CAT_1,(2,2))
# print(CAT_1[0].shape)
z= F.relu(self.conv1(z))
m = nn.ConstantPad2d(1,0)
z=m(z)
z= F.relu(self.conv2_bn(self.conv2(z)))
# print(z[0].shape)
CAT_2=torch.cat((CAT_1,z),1)
CAT_2=F.max_pool2d(CAT_2,(2,2))
# print(CAT_2[0].shape)
w= F.relu(self.conv1(w))
m = nn.ConstantPad2d(1,0)
w=m(w)
w = F.relu((self.conv2_bn(self.conv2(w))))
# print(w[0].shape)
x=torch.cat((CAT_2,w),1)
x=F.max_pool2d(x,(2,2))
# print("i lov pp")
# print(x[0].shape)
x=torch.nn.functional.avg_pool2d(x, (2,2))
# print("i lov pp")
# print(x[0].shape)
if self._to_linear is None:
self._to_linear = x[0].shape[0]*x[0].shape[1]*x[0].shape[2]
return x
def forward(self, x):
# print("i lov pp")
x=self.convs(x)
x=x.view(-1, self._to_linear)
x= F.relu(self.fc1(x))
x= self.fc2(x)
return F.softmax(x, dim=1)
# print(x[0].shape)
net=Net()
import torch.optim as optim
optimizer = optim.Adam(net.parameters(), lr=0.001)
loss_function = nn.MSELoss()
X = torch.Tensor([i[0] for i in training_data]).view(-1,256,256)
X=X/255.0
y = torch.Tensor([i[1] for i in training_data])
VAL_PCT = 0.1
val_size=int (len(X)*VAL_PCT)
print(val_size)
train_X= X[:-val_size]
train_y= y[:-val_size]
test_X=X[-val_size:]
test_y = y[-val_size:]
print(len(train_X))
print(len(test_X))
BATCH_SIZE =10
EPOCHS = 1
for epoch in range(EPOCHS):
for i in (range(0, len(train_X), BATCH_SIZE)):
#print(i, i+BATCH_SIZE)
batch_X = train_X[i:i+BATCH_SIZE].view(-1,1,256,256)
# print(batch_X.shape)
batch_y = train_y[i:i+BATCH_SIZE]
#print(batch_y.shape)
net.zero_grad()
outputs = net(batch_X)
#print (outputs.shape)
loss = loss_function(outputs, batch_y)
loss.backward()
optimizer.step()
#print(loss)
#print(f"Epoch: {epoch}. Loss: {loss}")
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/loss.py:432: UserWarning: Using a target size (torch.Size([10, 256, 256, 3])) that is different to the input size (torch.Size([10, 6])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
return F.mse_loss(input, target, reduction=self.reduction)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-38-a154b102127f> in <module>()
15 outputs = net(batch_X)
16 #print (outputs.shape)
---> 17 loss = loss_function(outputs, batch_y)
18 loss.backward()
19 optimizer.step()
3 frames
/usr/local/lib/python3.6/dist-packages/torch/functional.py in broadcast_tensors(*tensors)
60 if any(type(t) is not Tensor for t in tensors) and has_torch_function(tensors):
61 return handle_torch_function(broadcast_tensors, tensors, *tensors)
---> 62 return _VF.broadcast_tensors(tensors)
63
64
RuntimeError: The size of tensor a (10) must match the size of tensor b (9) at non-singleton dimension 3
I have executed the following code and getting the error shown at extreme bottom. I would like to know how to resolve this. thanks
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torchvision import transforms
_tasks = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
from torchvision.datasets import MNIST
mnist = MNIST("data", download=True, train=True, transform=_tasks)
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
create training and validation split
split = int(0.8 * len(mnist))
index_list = list(range(len(mnist)))
train_idx, valid_idx = index_list[:split], index_list[split:]
create sampler objects using SubsetRandomSampler
tr_sampler = SubsetRandomSampler(train_idx)
val_sampler = SubsetRandomSampler(valid_idx)
create iterator objects for train and valid datasets
trainloader = DataLoader(mnist, batch_size=256, sampler=tr_sampler)
validloader = DataLoader(mnist, batch_size=256, sampler=val_sampler)
Creating model for execution
class Model(nn.Module):
def init(self):
super().init()
self.hidden = nn.Linear(784, 128)
self.output = nn.Linear(128, 10)
def forward(self, x):
x = self.hidden(x)
x = F.sigmoid(x)
x = self.output(x)
return x
model = Model()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay= 1e-6, momentum = 0.9, nesterov = True)
for epoch in range(1, 11): ## run the model for 10 epochs
train_loss, valid_loss = [], []
#training part
model.train()
for data, target in trainloader:
optimizer.zero_grad()
#1. forward propagation
output = model(data)
#2. loss calculation
loss = loss_function(output, target)
#3. backward propagation
loss.backward()
#4. weight optimization
optimizer.step()
train_loss.append(loss.item())
# evaluation part
model.eval()
for data, target in validloader:
output = model(data)
loss = loss_function(output, target)
valid_loss.append(loss.item())
Executing this I am getting the following error :
RuntimeError Traceback (most recent call last) in ()
----> 1 output = model(data) 2 3 ## 2. loss calculation 4 loss = loss_function(output, target) 5
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in
call(self, *input, **kwargs) 487 result = self._slow_forward(*input,
**kwargs)
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py in
linear(input, weight, bias) 1352 ret =
torch.addmm(torch.jit._unwrap_optional(bias), input, weight.t()) 1353
else:
-> 1354 output = input.matmul(weight.t()) 1355 if bias is not None: 1356 output += torch.jit._unwrap_optional(bias)
RuntimeError: size mismatch, m1: [3584 x 28], m2: [784 x 128] at
/pytorch/aten/src/TH/generic/THTensorMath.cpp:940
Your input MNIST data has shape [256, 1, 28, 28] corresponding to [B, C, H, W]. You need to flatten the input images into a single 784 long vector before feeding it to the Linear layer Linear(784, 128) such that the input becomes [256, 784] corresponding to [B, N], where N is 1x28x28, your image size. This can be done as follows:
for data, target in trainloader:
# Flatten MNIST images into a 784 long vector
data = data.view(data.shape[0], -1)
optimizer.zero_grad()
...
The same is needed to be done in the validation loop.
I'm working on a linear regression problem with Pytorch.
I've had success with the single variable case, however when I perform multi-variable linear regression I get the following error. How should I perform linear regression with multiple variables?
TypeError Traceback (most recent call
last) in ()
9 optimizer.zero_grad() #gradient
10 outputs = model(inputs) #output
---> 11 loss = criterion(outputs,targets) #loss function
12 loss.backward() #backward propogation
13 optimizer.step() #1-step optimization(gradeint descent)
/anaconda/envs/tensorflow/lib/python3.6/site-packages/torch/nn/modules/module.py
in call(self, *input, **kwargs)
204
205 def call(self, *input, **kwargs):
--> 206 result = self.forward(*input, **kwargs)
207 for hook in self._forward_hooks.values():
208 hook_result = hook(self, input, result)
/anaconda/envs/tensorflow/lib/python3.6/site-packages/torch/nn/modules/loss.py
in forward(self, input, target)
22 _assert_no_grad(target)
23 backend_fn = getattr(self._backend, type(self).name)
---> 24 return backend_fn(self.size_average)(input, target)
25
26
/anaconda/envs/tensorflow/lib/python3.6/site-packages/torch/nn/_functions/thnn/auto.py
in forward(self, input, target)
39 output = input.new(1)
40 getattr(self._backend, update_output.name)(self._backend.library_state, input, target,
---> 41 output, *self.additional_args)
42 return output
43
TypeError: FloatMSECriterion_updateOutput received an invalid
combination of arguments - got (int, torch.FloatTensor,
torch.DoubleTensor, torch.FloatTensor, bool), but expected (int state,
torch.FloatTensor input, torch.FloatTensor target, torch.FloatTensor
output, bool sizeAverage)
here is code
#import
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
#input_size = 1
input_size = 3
output_size = 1
num_epochs = 300
learning_rate = 0.002
#Data set
#x_train = np.array([[1.564],[2.11],[3.3],[5.4]], dtype=np.float32)
x_train = np.array([[73.,80.,75.],[93.,88.,93.],[89.,91.,90.],[96.,98.,100.],[73.,63.,70.]],dtype=np.float32)
#y_train = np.array([[8.0],[19.0],[25.0],[34.45]], dtype= np.float32)
y_train = np.array([[152.],[185.],[180.],[196.],[142.]])
print('x_train:\n',x_train)
print('y_train:\n',y_train)
class LinearRegression(nn.Module):
def __init__(self,input_size,output_size):
super(LinearRegression,self).__init__()
self.linear = nn.Linear(input_size,output_size)
def forward(self,x):
out = self.linear(x) #Forward propogation
return out
model = LinearRegression(input_size,output_size)
#Lost and Optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)
#train the Model
for epoch in range(num_epochs):
#convert numpy array to torch Variable
inputs = Variable(torch.from_numpy(x_train)) #convert numpy array to torch tensor
#inputs = Variable(torch.Tensor(x_train))
targets = Variable(torch.from_numpy(y_train)) #convert numpy array to torch tensor
#forward+ backward + optimize
optimizer.zero_grad() #gradient
outputs = model(inputs) #output
loss = criterion(outputs,targets) #loss function
loss.backward() #backward propogation
optimizer.step() #1-step optimization(gradeint descent)
if(epoch+1) %5 ==0:
print('epoch [%d/%d], Loss: %.4f' % (epoch +1, num_epochs, loss.data[0]))
predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
plt.plot(x_train,y_train,'ro',label='Original Data')
plt.plot(x_train,predicted,label='Fitted Line')
plt.legend()
plt.show()
You need to make sure that the data has the same type. In this case x_train is a 32 bit float while y_train is a Double. You have to use:
y_train = np.array([[152.],[185.],[180.],[196.],[142.]],dtype=np.float32)