Why mkdir fails with different base images in Dockerfile - linux

I'am using Linus CentOS 7 and my Docker version is 19.03.8. When I try to build an image using a base image from Docker-hub its all good, but when I try to use private repository I receive an error.
My dockerfile looks like this
FROM <IMAGENAME>:<TAG> AS base
ENV MY_VAR=/home/test/installs
RUN mkdir -p $MY_VAR ....
The remaining is irrelevant for now, since I got error saying
mkdir: cannot create directory '/home/vmtest' : Permission denied
As I said, I tested it with image from Docker-hub and this worked just fine.. To use the private repo I've modified the daemon.json file adding this
{
"insecure-registries" : ["myregistrydomain.com:5000"]
}
Is there some connection between those or if somebody has an idea I would be really thankful.

Related

Docker compose with shared files [duplicate]

How can I include files from outside of Docker's build context using the "ADD" command in the Docker file?
From the Docker documentation:
The path must be inside the context of the build; you cannot ADD
../something/something, because the first step of a docker build is to
send the context directory (and subdirectories) to the docker daemon.
I do not want to restructure my whole project just to accommodate Docker in this matter. I want to keep all my Docker files in the same sub-directory.
Also, it appears Docker does not yet (and may not ever) support symlinks: Dockerfile ADD command does not follow symlinks on host #1676.
The only other thing I can think of is to include a pre-build step to copy the files into the Docker build context (and configure my version control to ignore those files). Is there a better workaround for than that?
The best way to work around this is to specify the Dockerfile independently of the build context, using -f.
For instance, this command will give the ADD command access to anything in your current directory.
docker build -f docker-files/Dockerfile .
Update: Docker now allows having the Dockerfile outside the build context (fixed in 18.03.0-ce). So you can also do something like
docker build -f ../Dockerfile .
I often find myself utilizing the --build-arg option for this purpose. For example after putting the following in the Dockerfile:
ARG SSH_KEY
RUN echo "$SSH_KEY" > /root/.ssh/id_rsa
You can just do:
docker build -t some-app --build-arg SSH_KEY="$(cat ~/file/outside/build/context/id_rsa)" .
But note the following warning from the Docker documentation:
Warning: It is not recommended to use build-time variables for passing secrets like github keys, user credentials etc. Build-time variable values are visible to any user of the image with the docker history command.
I spent a good time trying to figure out a good pattern and how to better explain what's going on with this feature support. I realized that the best way to explain it was as follows...
Dockerfile: Will only see files under its own relative path
Context: a place in "space" where the files you want to share and your Dockerfile will be copied to
So, with that said, here's an example of the Dockerfile that needs to reuse a file called start.sh
Dockerfile
It will always load from its relative path, having the current directory of itself as the local reference to the paths you specify.
COPY start.sh /runtime/start.sh
Files
Considering this idea, we can think of having multiple copies for the Dockerfiles building specific things, but they all need access to the start.sh.
./all-services/
/start.sh
/service-X/Dockerfile
/service-Y/Dockerfile
/service-Z/Dockerfile
./docker-compose.yaml
Considering this structure and the files above, here's a docker-compose.yml
docker-compose.yaml
In this example, your shared context directory is the runtime directory.
Same mental model here, think that all the files under this directory are moved over to the so-called context.
Similarly, just specify the Dockerfile that you want to copy to that same directory. You can specify that using dockerfile.
The directory where your main content is located is the actual context to be set.
The docker-compose.yml is as follows
version: "3.3"
services:
service-A
build:
context: ./all-service
dockerfile: ./service-A/Dockerfile
service-B
build:
context: ./all-service
dockerfile: ./service-B/Dockerfile
service-C
build:
context: ./all-service
dockerfile: ./service-C/Dockerfile
all-service is set as the context, the shared file start.sh is copied there as well the Dockerfile specified by each dockerfile.
Each gets to be built their own way, sharing the start file!
On Linux you can mount other directories instead of symlinking them
mount --bind olddir newdir
See https://superuser.com/questions/842642 for more details.
I don't know if something similar is available for other OSes.
I also tried using Samba to share a folder and remount it into the Docker context which worked as well.
If you read the discussion in the issue 2745 not only docker may never support symlinks they may never support adding files outside your context. Seems to be a design philosophy that files that go into docker build should explicitly be part of its context or be from a URL where it is presumably deployed too with a fixed version so that the build is repeatable with well known URLs or files shipped with the docker container.
I prefer to build from a version controlled source - ie docker build
-t stuff http://my.git.org/repo - otherwise I'm building from some random place with random files.
fundamentally, no.... -- SvenDowideit, Docker Inc
Just my opinion but I think you should restructure to separate out the code and docker repositories. That way the containers can be generic and pull in any version of the code at run time rather than build time.
Alternatively, use docker as your fundamental code deployment artifact and then you put the dockerfile in the root of the code repository. if you go this route probably makes sense to have a parent docker container for more general system level details and a child container for setup specific to your code.
I believe the simpler workaround would be to change the 'context' itself.
So, for example, instead of giving:
docker build -t hello-demo-app .
which sets the current directory as the context, let's say you wanted the parent directory as the context, just use:
docker build -t hello-demo-app ..
You can also create a tarball of what the image needs first and use that as your context.
https://docs.docker.com/engine/reference/commandline/build/#/tarball-contexts
This behavior is given by the context directory that the docker or podman uses to present the files to the build process.
A nice trick here is by changing the context dir during the building instruction to the full path of the directory, that you want to expose to the daemon.
e.g:
docker build -t imageName:tag -f /path/to/the/Dockerfile /mysrc/path
using /mysrc/path instead of .(current directory), you'll be using that directory as a context, so any files under it can be seen by the build process.
This example you'll be exposing the entire /mysrc/path tree to the docker daemon.
When using this with docker the user ID who triggered the build must have recursively read permissions to any single directory or file from the context dir.
This can be useful in cases where you have the /home/user/myCoolProject/Dockerfile but want to bring to this container build context, files that aren't in the same directory.
Here is an example of building using context dir, but this time using podman instead of docker.
Lets take as example, having inside your Dockerfile a COPY or ADDinstruction which is copying files from a directory outside of your project, like:
FROM myImage:tag
...
...
COPY /opt/externalFile ./
ADD /home/user/AnotherProject/anotherExternalFile ./
...
In order to build this, with a container file located in the /home/user/myCoolProject/Dockerfile, just do something like:
cd /home/user/myCoolProject
podman build -t imageName:tag -f Dockefile /
Some known use cases to change the context dir, is when using a container as a toolchain for building your souce code.
e.g:
podman build --platform linux/s390x -t myimage:mytag -f ./Dockerfile /tmp/mysrc
or it can be a path relative, like:
podman build --platform linux/s390x -t myimage:mytag -f ./Dockerfile ../../
Another example using this time a global path:
FROM myImage:tag
...
...
COPY externalFile ./
ADD AnotherProject ./
...
Notice that now the full global path for the COPY and ADD is omitted in the Dockerfile command layers.
In this case the contex dir must be relative to where the files are, if both externalFile and AnotherProject are in /opt directory then the context dir for building it must be:
podman build -t imageName:tag -f ./Dockerfile /opt
Note when using COPY or ADD with context dir in docker:
The docker daemon will try to "stream" all the files visible on the context dir tree to the daemon, which can slowdown the build. And requires the user to have recursively permission from the context dir.
This behavior can be more costly specially when using the build through the API. However,with podman the build happens instantaneously, without needing recursively permissions, that's because podman does not enumerate the entire context dir, and doesn't use a client/server architecture as well.
The build for such cases can be way more interesting to use podman instead of docker, when you face such issues using a different context dir.
Some references:
https://docs.docker.com/engine/reference/commandline/build/
https://docs.podman.io/en/latest/markdown/podman-build.1.html
As is described in this GitHub issue the build actually happens in /tmp/docker-12345, so a relative path like ../relative-add/some-file is relative to /tmp/docker-12345. It would thus search for /tmp/relative-add/some-file, which is also shown in the error message.*
It is not allowed to include files from outside the build directory, so this results in the "Forbidden path" message."
Using docker-compose, I accomplished this by creating a service that mounts the volumes that I need and committing the image of the container. Then, in the subsequent service, I rely on the previously committed image, which has all of the data stored at mounted locations. You will then have have to copy these files to their ultimate destination, as host mounted directories do not get committed when running a docker commit command
You don't have to use docker-compose to accomplish this, but it makes life a bit easier
# docker-compose.yml
version: '3'
services:
stage:
image: alpine
volumes:
- /host/machine/path:/tmp/container/path
command: bash -c "cp -r /tmp/container/path /final/container/path"
setup:
image: stage
# setup.sh
# Start "stage" service
docker-compose up stage
# Commit changes to an image named "stage"
docker commit $(docker-compose ps -q stage) stage
# Start setup service off of stage image
docker-compose up setup
Create a wrapper docker build shell script that grabs the file then calls docker build then removes the file.
a simple solution not mentioned anywhere here from my quick skim:
have a wrapper script called docker_build.sh
have it create tarballs, copy large files to the current working directory
call docker build
clean up the tarballs, large files, etc
this solution is good because (1.) it doesn't have the security hole from copying in your SSH private key (2.) another solution uses sudo bind so that has another security hole there because it requires root permission to do bind.
I think as of earlier this year a feature was added in buildx to do just this.
If you have dockerfile 1.4+ and buildx 0.8+ you can do something like this
docker buildx build --build-context othersource= ../something/something .
Then in your docker file you can use the from command to add the context
ADD –from=othersource . /stuff
See this related post https://www.docker.com/blog/dockerfiles-now-support-multiple-build-contexts/
Workaround with links:
ln path/to/file/outside/context/file_to_copy ./file_to_copy
On Dockerfile, simply:
COPY file_to_copy /path/to/file
I was personally confused by some answers, so decided to explain it simply.
You should pass the context, you have specified in Dockerfile, to docker when
want to create image.
I always select root of project as the context in Dockerfile.
so for example if you use COPY command like COPY . .
first dot(.) is the context and second dot(.) is container working directory
Assuming the context is project root, dot(.) , and code structure is like this
sample-project/
docker/
Dockerfile
If you want to build image
and your path (the path you run the docker build command) is /full-path/sample-project/,
you should do this
docker build -f docker/Dockerfile .
and if your path is /full-path/sample-project/docker/,
you should do this
docker build -f Dockerfile ../
An easy workaround might be to simply mount the volume (using the -v or --mount flag) to the container when you run it and access the files that way.
example:
docker run -v /path/to/file/on/host:/desired/path/to/file/in/container/ image_name
for more see: https://docs.docker.com/storage/volumes/
I had this same issue with a project and some data files that I wasn't able to move inside the repo context for HIPAA reasons. I ended up using 2 Dockerfiles. One builds the main application without the stuff I needed outside the container and publishes that to internal repo. Then a second dockerfile pulls that image and adds the data and creates a new image which is then deployed and never stored anywhere. Not ideal, but it worked for my purposes of keeping sensitive information out of the repo.
In my case, my Dockerfile is written like a template containing placeholders which I'm replacing with real value using my configuration file.
So I couldn't specify this file directly but pipe it into the docker build like this:
sed "s/%email_address%/$EMAIL_ADDRESS/;" ./Dockerfile | docker build -t katzda/bookings:latest . -f -;
But because of the pipe, the COPY command didn't work. But the above way solves it by -f - (explicitly saying file not provided). Doing only - without the -f flag, the context AND the Dockerfile are not provided which is a caveat.
How to share typescript code between two Dockerfiles
I had this same problem, but for sharing files between two typescript projects. Some of the other answers didn't work for me because I needed to preserve the relative import paths between the shared code. I solved it by organizing my code like this:
api/
Dockerfile
src/
models/
index.ts
frontend/
Dockerfile
src/
models/
index.ts
shared/
model1.ts
model2.ts
index.ts
.dockerignore
Note: After extracting the shared code into that top folder, I avoided needing to update the import paths because I updated api/models/index.ts and frontend/models/index.ts to export from shared: (eg export * from '../../../shared)
Since the build context is now one directory higher, I had to make a few additional changes:
Update the build command to use the new context:
docker build -f Dockerfile .. (two dots instead of one)
Use a single .dockerignore at the top level to exclude all node_modules. (eg **/node_modules/**)
Prefix the Dockerfile COPY commands with api/ or frontend/
Copy shared (in addition to api/src or frontend/src)
WORKDIR /usr/src/app
COPY api/package*.json ./ <---- Prefix with api/
RUN npm ci
COPY api/src api/ts*.json ./ <---- Prefix with api/
COPY shared usr/src/shared <---- ADDED
RUN npm run build
This was the easiest way I could send everything to docker, while preserving the relative import paths in both projects. The tricky (annoying) part was all the changes/consequences caused by the build context being up one directory.
One quick and dirty way is to set the build context up as many levels as you need - but this can have consequences.
If you're working in a microservices architecture that looks like this:
./Code/Repo1
./Code/Repo2
...
You can set the build context to the parent Code directory and then access everything, but it turns out that with a large number of repositories, this can result in the build taking a long time.
An example situation could be that another team maintains a database schema in Repo1 and your team's code in Repo2 depends on this. You want to dockerise this dependency with some of your own seed data without worrying about schema changes or polluting the other team's repository (depending on what the changes are you may still have to change your seed data scripts of course)
The second approach is hacky but gets around the issue of long builds:
Create a sh (or ps1) script in ./Code/Repo2 to copy the files you need and invoke the docker commands you want, for example:
#!/bin/bash
rm -r ./db/schema
mkdir ./db/schema
cp -r ../Repo1/db/schema ./db/schema
docker-compose -f docker-compose.yml down
docker container prune -f
docker-compose -f docker-compose.yml up --build
In the docker-compose file, simply set the context as Repo2 root and use the content of the ./db/schema directory in your dockerfile without worrying about the path.
Bear in mind that you will run the risk of accidentally committing this directory to source control, but scripting cleanup actions should be easy enough.

Permission denied while running a script file (.sh) with a docker file

What I'm trying to do is,
I created a docker file using Ubuntu as the base image,
ARG VERSION
FROM ubuntu:18.04
COPY configs/base.properties /root/base.properties
this property file contains some configs and the Dockerfile just copies that into the container. (let's assume I tag this image as configimage:1.0)
And then I created a second docker file which uses the above docker image as the base image. (let's assume I tag this as midbase:1.0)
FROM configimage:1.0
COPY resource/bootstrap.sh .
RUN ["chmod", "a+x", "bootstrap.sh"]
CMD ["ls"]
all the script file does is copying the configs I copied in the previous image to a separate location in the container.
#!/bin/bash
mkdir -p ~/configs
cp --archive ~/root/base.properties ~/configs/base.properties
echo "Configs copied"
I added the ls command to check that the folder is created in the container (In midbase:1.0), but I noticed that the configs folder is not created in the midbase:1.0 container.
Do you have any tips to solve this issue?
Try the following
RUN ["sh", "bootstrap.sh"]

How to edit a file inside a docker image without rebuilding the entire image?

I have a huge Nodejs microservice with a huge code base(not mine), I am trying to build docker images and run them locally, but when I do that I see failures in my code like
1st Error : was due to me adding a /**/ comment block in a json file
2nd Error : Route.post() requires callback functions but got a [object Undefined] [I know this is an error in my route ]
Question is how do I catch these errors before hand before building my docker Image , and in cases like the first error how can I directly replace the file in the docker image.
create a new Dockerfile
FROM myimage:mytag
COPY new_file /path/file
in this way docker will use the already build image you have
Other solution:
create the container
docker create --name mycon myimage
copy the new file to it:
docker cp myfile mycon:/path/myfile

Docker compose volume mapping with NodeJS app

I am trying to achieve something incredibly basic, but have been going at this for a couple of evenings now and still haven't found a solid (or any) solution. I have found some similar topics on SO and followed what was on there but to no avail, so I have created a GitHub repo for my specific case.
What I'm trying to do:
Be able to provision NodeJS app using docker-compose up -d (I plan to add further containers in future, omitted from this example)
Ensure the code is mapped via volumes so I don't have to re-build every time I make a change to some code locally.
My guess is the issue I'm encountering is something to do with the mapping of volumes causing some files to be lost/overwritten within the container, for instance in some of the variations I've tried the folders are being mapped but individual files are not.
I've created a simple repo to illustrate my issue, just checkout and run docker-compose up -d to see the issue, the container dies due to:
Error: Cannot find module '/src/app/app.js'
The link to the repo is here: https://github.com/josephmcdermott/nodejs-docker-issue, PR's welcome and if anybody can solve this for me I'd be eternally grateful.
UPDATE: please see the solution code below, kind thanks to ldg
Dockerfile
FROM node:4.4.7
RUN mkdir -p /src
COPY . /src
WORKDIR /src
RUN npm install
EXPOSE 3000
CMD ["node", "/src/app.js"]
docker-compose.yml
app:
build: .
volumes:
- ./app:/src/app
Folder Structure:
- app
- - * (files I want to sync and regularly update)
- app.js (initial script to call files within app/)
- Dockerfile
- docker-compose.yml
- package.json
In your compose file, the last line - /src/app/node_modules is likely mapping over your previous volume. If you mount /scr/app then node_modules will get created in that linked volume. So it would look like this:
app:
build: .
volumes:
- ./app:/src/app
If you do want to keep your entire /app directory as a linked volume, you'll need to either do npm install when starting the container (which would insure it picks up any updates) OR don't link the volume and update your Dockerfile to copy the entire /app directory. This is nice because it gives you a self-contained image. I usually Dockerize my Node.js apps this way. You can also run npm test as appropriate to verify the image.
If you need to create a linked volume for a script file you want to be able to edit (or if your app generates side-effects), you can link just that directory or file via Docker volumes.
Btw, if you want to make sure you don't copy the contents of that directory in the future, add it to .dockerignore (as well as .gitignore).
Notice the '/' at the end
volumes:
- ./app:/src/app/
This declaration is not correct
volumes:
- ./app:/src/app

Docker invalid tag value

I'm trying to build the OwnCloud desktop client, for which the Owncloud docs explain that docker should be used:
Assuming you are in the root of the ownCloud Client’s source tree, you
can build an image from this Dockerfile like this:
cd admin/win32/docker
docker build . -t ownCloud-client-win32:<version>
I get an error with this exact command, so following the docker build docs I moved the dot to the end. But then I get the following error:
$ docker build -t ownCloud-client-win32:2.1 .
invalid value "ownCloud-client-win32:2.1" for flag -t: Error parsing reference: "ownCloud-client-win32:2.1" is not a valid repository/tag
See 'docker build --help'.
Why is ownCloud-client-win32:2.1 not a valid tag name?
I then just tried running docker build ., which runs successfully, but then I end up with an untagged image.
Does anybody have any idea how I can solve this?
ps. I don't know if it's important, but the relevant Dockerfile is here.
No uppercase. Try: owncloud-client-win32:2.1

Resources