I want to generate 10 million lines’ wordcount file for performance test(each line has the same sentence). But I have no idea about how to code it.
You can give me an example code, and save file in HDFS directly.
You can try something like this.
Generate 1 column with values from 1 to 100k and one with values from 1 to 100 explode both of them with explode(column).
You can't generate one column with 10 Mil values because kryo buffer is gonna throw an error.
I don't know if this is the best performance way to do it, but it is the fastest way I can think right now.
val generateList = udf((s: Int) => {
val buf = scala.collection.mutable.ArrayBuffer.empty[Int]
for(i <- 1 to s) {
buf += i
}
buf
})
val someDF = Seq(
("Lorem ipsum dolor sit amet, consectetur adipiscing elit.")
).toDF("sentence")
val someDfWithMilColumn = someDF.withColumn("genColumn1", generateList(lit(100000)))
.withColumn("genColumn2", generateList(lit(100)))
val someDfWithMilColumn100k = someDfWithMilColumn
.withColumn("expl_val", explode($"mil")).drop("expl_val", "genColumn1")
val someDfWithMilColumn10mil = someDfWithMilColumn100k
.withColumn("expl_val2", explode($"10")).drop("genColumn2", "expl_val2")
someDfWithMilColumn10mil.write.parquet(path)
You can do it by joining the 2 DFs as below,
Also find the code explanation inline.
import org.apache.spark.sql.SaveMode
object GenerateTenMils {
def main(args: Array[String]): Unit = {
val spark = Constant.getSparkSess
spark.conf.set("spark.sql.crossJoin.enabled","true") // Enable cross join
import spark.implicits._
//Create a DF with your sentence
val df = List("each line has the same sentence").toDF
//Create another Dataset with 10000000 records
spark.range(10000000)
.join(df) // Cross Join the dataframes
.coalesce(1) // Output to a single file
.drop("id") // Drop the extra column
.write
.mode(SaveMode.Overwrite)
.text("src/main/resources/tenMils") // Write as text file
}
}
You could follow this approach.
Tail recursive to generate the objects list and Dataframes, and Union to generate the big Dataframe
val spark = SparkSession
.builder()
.appName("TenMillionsRows")
.master("local[*]")
.config("spark.sql.shuffle.partitions","4") //Change to a more reasonable default number of partitions for our data
.config("spark.app.id","TenMillionsRows") // To silence Metrics warning
.getOrCreate()
val sc = spark.sparkContext
import spark.implicits._
/**
* Returns a List of nums sentences
* #param sentence
* #param num
* #return
*/
def getList(sentence: String, num: Int) : List[String] = {
#tailrec
def loop(st: String,n: Int, acc: List[String]): List[String] = {
n match {
case num if num == 0 => acc
case _ => loop(st, n - 1, st :: acc)
}
}
loop(sentence,num,List())
}
/**
* Returns a Dataframe that is the union of nums dataframes
* #param lst
* #param num
* #return
*/
def getDataFrame(lst: List[String], num: Int): DataFrame = {
#tailrec
def loop (ls: List[String],n: Int, acc: DataFrame): DataFrame = {
n match {
case n if n == 0 => acc
case _ => loop(lst,n - 1, acc.union(sc.parallelize(ls).toDF("sentence")))
}
}
loop(lst, num, sc.parallelize(List(sentence)).toDF("sentence"))
}
val sentence = "hope for the best but prepare for the worst"
val lSentence = getList(sentence, 100000)
val dfs = getDataFrame(lSentence,100)
println(dfs.count())
// output: 10000001
dfs.write.orc("path_to_hdfs") // write dataframe to a orc file
// you can save the file as parquet, txt, json .......
// with dataframe.write
Hope this helps.
Related
how i can find the occurence of the matched string as per the below code snippet, i'm able to get the filtered strings as an output , but not the occurences
import org.apache.spark._
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
object WordCount {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("wordCount")
val sc = new SparkContext(conf)
// Load our input data.
val input = sc.textFile("file:///tmp/ganesh/*")
val matched_pattern = input.filter(line => line.contains("Title"))
// Split it up into words.
val words = matched_pattern.flatMap(line => line.split(" "))
// Transform into pairs and count.
val counts = words.map(word => (word, 1)).reduceByKey{case (x, y) => x + y}
// Save the word count back out to a text file, causing evaluation.
counts.saveAsTextFile("file:///tmp/sparkout")
}
}
Here is an example - with broadcast variable usage. stopWords is in fact include words.
val dfsFilename = "/FileStore/tables/7dxa9btd1477497663691/Text_File_01-880f5.txt"
val readFileRDD = spark.sparkContext.textFile(dfsFilename)
// res4: Array[String] = Array(The the is Is a A to To OK ok I) //stopWords
val stopWordsInput = spark.sparkContext.textFile("/FileStore/tables/filter_words.txt")
val stopWords = stopWordsInput.flatMap(x => x.split(" ")).map(_.trim).collect.toSet
val broadcasted = sc.broadcast(stopWords)
val wcounts1 = readFileRDD.map(x => (x.replaceAll("[^A-Za-z0-9]", " ")
.trim.toLowerCase))
.flatMap(line=>line.split(" "))
.filter(broadcasted.value.contains(_))
.map(word=>(word, 1))
.reduceByKey(_ + _)
wcounts1.collect
returns:
res2: Array[(String, Int)] = Array((The,1), (I,3), (to,1), (the,1))
You can embellish with broadcast on the stopWords -which is what I did.
I saw you XML input and a replaceAll. You can fiddle with that to your liking. I also added a clause to put it all to lower case.
I have a Not Serializable Class exception in Spark 2.2.0.
The following procedure is what I am trying to do in Scala:
To read from HDFS a set of JPEG images.
To build an array of java.awt.image.BufferedImageS.
To extract the java.awt.image.BufferedImage buffer and store it in a 2D array for each image, by building an array of two-dimensional arrays containing the image buffer information Array[Array[Int]].
Transform the Array[Array[Int]] into an org.apache.spark.rdd.RDD[Array[Array[Int]]] by using sc.parallelize method.
Perform image processing operations distributelly by transforming the initial org.apache.spark.rdd.RDD[Array[Array[Int]]].
This is the code:
import org.apache.spark.sql.SparkSession
import javax.imageio.ImageIO
import java.io.ByteArrayInputStream
def binarize(image: Array[Array[Int]], threshold: Int) : Array[Array[Int]] = {
val height = image.size
val width = image(0).size
val result = Array.ofDim[Int](height, width)
for (i <- 0 until height) {
for (j <- 0 until width){
result(i)(j) = if (image(i)(j) <= threshold) 0 else 255
}
}
result
}
object imageTestObj {
def main(args: Array[String]) {
val spark = SparkSession.builder().appName("imageTest2").getOrCreate()
val sc = spark.sparkContext
val saveToHDFS = false
val threshold: Int = 128
val partitions = 32
val inPathStr = "hdfs://192.168.239.218:9000/vitrion/input"
val outPathStr = if (saveToHDFS) "hdfs://192.168.239.54:9000/vitrion/output/" else "/home/vitrion/IdeaProjects/imageTest2/output/"
val files = sc.binaryFiles(inPathStr).collect
val AWTImageArray = files.map { binFile =>
val input = binFile._2.open()
val name = binFile._1
var buffer: Array[Byte] = Array.fill(input.available)(0)
input.readFully(buffer)
ImageIO.read(new ByteArrayInputStream(buffer))
}
val ImgBuffers = AWTImageArray.map { image =>
val height = image.getHeight
val width = image.getWidth
val buffer = Array.ofDim[Int](height, width)
for (i <- 0 until height) {
for (j <- 0 until width){
buffer(i)(j) = image.getRaster.getDataBuffer.getElem(0, i * width + j)
}
}
buffer
}
val inputImages = sc.parallelize(ImgBuffers, partitions).cache()
val op1 = inputImages.map(image => binarize(image, threshold))
}
}
This algorithm gets a very well-known exception:
org.apache.spark.SparkException: Task not serializable
...
Caused by: java.io.NotSerializableException: java.awt.image.BufferedImage
Serialization stack:
- object not serializable (class: java.awt.image.BufferedImage, ...
I do not understand why Spark attempts to serialize the BufferedImage class when it is used before creating the first RDD in the application. Isn't it supposed that the BufferedImage class should be serialized if I try to create an RDD[BufferedImage]?
Can somebody explain me what is going on?
Thank you in advance...
Actually you are serializing a function in Spark. This function cannot contain references to non serializable classes. You can instantiate in the function non-serializable classes (OK), but NOT refer to instances of non serializable classes in the function.
Most probably you are referencing in one of the functions you use to an instance of a BufferedImage.
Check your code and see if you are not referencing from a function a BufferedImage object.
By inlining some code and not serializing BufferedImage objects, I guess you can overcome the exception. Can you try out this code (did not execute it myself)?:
object imageTestObj {
def main(args: Array[String]) {
val spark = SparkSession.builder().appName("imageTest2").getOrCreate()
val sc = spark.sparkContext
val saveToHDFS = false
val threshold: Int = 128
val partitions = 32
val inPathStr = "hdfs://192.168.239.218:9000/vitrion/input"
val outPathStr = if (saveToHDFS) "hdfs://192.168.239.54:9000/vitrion/output/" else "/home/vitrion/IdeaProjects/imageTest2/output/"
val ImgBuffers = sc.binaryFiles(inPathStr).collect.map { binFile =>
val input = binFile._2.open()
val name = binFile._1
var buffer: Array[Byte] = Array.fill(input.available)(0)
input.readFully(buffer)
val image = ImageIO.read(new ByteArrayInputStream(buffer))
// Inlining must be here, so that BufferedImage is not serialized.
val height = image.getHeight
val width = image.getWidth
val buffer = Array.ofDim[Int](height, width)
for (i <- 0 until height) {
for (j <- 0 until width){
buffer(i)(j) = image.getRaster.getDataBuffer.getElem(0, i * width + j)
}
}
buffer
}
val inputImages = sc.parallelize(ImgBuffers, partitions).cache()
val op1 = inputImages.map(image => binarize(image, threshold))
}
}
I am new to spark and i want to calculate the null rate of each columns,(i have 200 columns), my function is as follows:
def nullCount(dataFrame: DataFrame): Unit = {
val args = dataFrame.columns.length
val cols = dataFrame.columns
val d=dataFrame.count()
println("Follows are the null value rate of each columns")
for (i <- Range(0,args)) {
var nullrate = dataFrame.rdd.filter(r => r(i) == (-900)).count.toDouble / d
println(cols(i), nullrate)
}
}
But I find it's too slow , is there any more effective way to do this ?
Adapted from this answer by zero323:
import org.apache.spark.sql.functions.{col, count, when}
df.select(df.columns.map(c => (count(c) / count("*")).alias(c)): _*)
with -900:
df.select(df.columns.map(
c => (count(when(col(c) === -900, col(c))) / count("*")).alias(c)): _*)
I have 5 shuffled key-value rdds, one big one(1,000,000 records), and 4 relative small ones(100,000 records).All rdds were shullfed with the same number of partitions, I have two strategies to merge the 5 one,
Merge the 5 rdds together
merge the 4 small rdds together and then join the bigone
I think the strategy 2 would be more efficiently, as it would not re-shuffle the big one. But the experiment result shows the strategy 1 more efficient. The code and output are following:
Code
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkContext, SparkConf}
object MergeStrategy extends App {
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val conf = new SparkConf().setMaster("local[4]").setAppName("test")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val bigRddSize = 1e6.toInt
val smallRddSize = 1e5.toInt
println(bigRddSize)
val bigRdd = sc.parallelize((0 until bigRddSize)
.map(x => (scala.util.Random.nextInt, 0))).repartition(100).cache
bigRdd.take(10).foreach(println)
val smallRddList = (0 until 4).map(i => {
val rst = sc.parallelize((0 until smallRddSize)
.map(x => (scala.util.Random.nextInt, 0))).repartition(100).cache
println(rst.count)
rst
}).toArray
// strategy 1
{
val begin = System.currentTimeMillis
val s1Rst = sc.union(Array(bigRdd) ++ smallRddList).distinct(100)
println(s1Rst.count)
val end = System.currentTimeMillis
val timeCost = (end - begin) / 1000d
println("S1 time count: %.1f s".format(timeCost))
}
// strategy 2
{
val begin = System.currentTimeMillis
val smallMerged = sc.union(smallRddList).distinct(100).cache
println(smallMerged.count)
val s2Rst = bigRdd.fullOuterJoin(smallMerged).flatMap({ case (key, (left, right)) => {
if (left.isDefined && right.isDefined) Array((key, left.get), (key, right.get)).distinct
else if (left.isDefined) Array((key, left.get))
else if (right.isDefined) Array((key, right.get))
else throw new Exception("Cannot happen")
}
})
println(s2Rst.count)
val end = System.currentTimeMillis
val timeCost = (end - begin) / 1000d
println("S2 time count: %.1f s".format(timeCost))
}
}
Output
1000000
(688282474,0)
(-255073127,0)
(872746474,0)
(-792516900,0)
(417252803,0)
(-1514224305,0)
(1586932811,0)
(1400718248,0)
(939155130,0)
(1475156418,0)
100000
100000
100000
100000
1399777
S1 time count: 39.7 s
399984
1399894
S2 time count: 49.8 s
My understanding for shuffled rdd was wrong? Can anybody give some advices?
Thanks!
I found a method to merge rdd more efficiently, see the following 2 merging strategies:
import org.apache.log4j.{Level, Logger}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
import org.apache.spark.{HashPartitioner, SparkContext, SparkConf}
import scala.collection.mutable.ArrayBuffer
object MergeStrategy extends App {
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val conf = new SparkConf().setMaster("local[4]").setAppName("test")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val rddCount = 20
val mergeCount = 5
val dataSize = 20000
val parts = 50
// generate data
scala.util.Random.setSeed(943343)
val testData = for (i <- 0 until rddCount)
yield sc.parallelize(scala.util.Random.shuffle((0 until dataSize).toList).map(x => (x, 0)))
.partitionBy(new HashPartitioner(parts))
.cache
testData.foreach(x => println(x.count))
// strategy 1: merge directly
{
val buff = ArrayBuffer[RDD[(Int, Int)]]()
val begin = System.currentTimeMillis
for (i <- 0 until rddCount) {
buff += testData(i)
if ((buff.size >= mergeCount || i == rddCount - 1) && buff.size > 1) {
val merged = sc.union(buff).distinct
.partitionBy(new HashPartitioner(parts)).cache
println(merged.count)
buff.foreach(_.unpersist(false))
buff.clear
buff += merged
}
}
val end = System.currentTimeMillis
val timeCost = (end - begin) / 1000d
println("Strategy 1 Time Cost: %.1f".format(timeCost))
assert(buff.size == 1)
println("Strategy 1 Complete, with merged Count %s".format(buff(0).count))
}
// strategy 2: merge directly without repartition
{
val buff = ArrayBuffer[RDD[(Int, Int)]]()
val begin = System.currentTimeMillis
for (i <- 0 until rddCount) {
buff += testData(i)
if ((buff.size >= mergeCount || i == rddCount - 1) && buff.size > 1) {
val merged = sc.union(buff).distinct(parts).cache
println(merged.count)
buff.foreach(_.unpersist(false))
buff.clear
buff += merged
}
}
val end = System.currentTimeMillis
val timeCost = (end - begin) / 1000d
println("Strategy 2 Time Cost: %.1f".format(timeCost))
assert(buff.size == 1)
println("Strategy 2 Complete, with merged Count %s".format(buff(0).count))
}
}
The result shows that strategy 1 (time cost 20.8 seconds) is more efficient than strategy 2 (time cost 34.3 seconds). my pc is window 8, CPU 4 cores 2.0GHz, 8GB memory.
The only difference is that strategy partitioned by HashPartitioner, but strategy 2 not. As a result, the strategy 1 produce ShuffledRDD, but strategy 1 MapPartitionsRDD. I think RDD.distinct function processes ShuflledRDD more efficiently than MapPartitionsRDD.
There is my code, load data from hive, and do sample balance:
// Load SubSet Data
val dataList = DataLoader.loadSubTrainTestData(hiveContext.sql(sampleDataHql))
// Split Data to Train and Test
val data = dataList.randomSplit(Array(0.7, 0.3), seed = 11L)
// Random balance train data
val sampleCount = data(0).map(rec => (rec.label, 1)).reduceByKey(_ + _)
val positiveSample = data(0).filter(_.label == 1).cache()
val positiveSize = positiveSample.count()
val negativeSample = data(0).filter(_.label == 0).cache()
val negativeSize = negativeSample.count()
// Build train data
val trainData = positiveSample ++
negativeSample.sample(withReplacement = false, 1.0 * positiveSize.toFloat / negativeSize, System.nanoTime())
// Data size
val trainDataSize = positiveSize + negativeSize
val testDataSize = trainDataSize * 3.0 / 7.0
and i calculate the trainDataSize and testDataSize for evaluate the model confidence
Ok I haven't tested this code, but it should go like this :
val data: RDD[LabeledPoint] = ???
val fractions: Map[Double, Double] = Map(0.0 -> 0.5, 1.0 -> 0.5)
val sampledData: RDD[LabeledPoint] = data
.keyBy(_.label)
.sampleByKeyExact(false, fractions) // Optionally with seed
.values
You can convert your LabeledPoint into PairRDDs than apply a sampleByKeyExact using the fractions you wish to use.