A question regarding interpretation of negative guided Grad-CAM value - conv-neural-network

I am currently learning convolutional neural networks, and its visualization algorithm Grad-CAM.
I implemented them in keras, and the results looks decent.
My question is that when calculating guided Grad-CAM (multiplication of Grad-CAM value and guided back-propagation value), the result have both positive and negative score for the image.
My initial thought was that positive guided Grad-CAM value indicates that the presence of the respective pixel results in increased score in the respective class, and negative value indicates the absence of the pixel results in increased score.
Is this interpretation correct?
Sincerely,

Maybe your implementation of Grad-CAM is missing the part where only positive values are taken into account. Check this...
So you should take the maps and discard negative values. That's what I've done.

Related

How to obtain the precision score of "positives" instead of "negatives" with the cross_val_predict() function?

I use cross validation on a binary dataset.
Right, now when I enter the following lines:
clf = cross_val_score(cl_mnb,transcriptsVectorized, y=Labels,cv=6,scoring = 'precision')
print(clf.round(2))
I do get precision scores, but only for the the negatives; I want to have the precision of the positive cases.
When I look up the available metrics with sklearn.metrics.SCORERS, I don't I cant find that option, does it exist?
I feel the notation you are using in the question may not be correct, so please assist me if the answer does not solve your problem.
First of all, let's take a look at the confusion matrix reference.
Precision or positive predictive value:
Scikit-learn respects this formula and interprets 1 (or true) as positives. The condition positive and predicted condition positive are used to obtain the precision.
By positive cases, do you refer to condition positive cases evaluation? You can use the recall metric in this case, which is also offered by sklearn...
The recall evaluates your model prediction of real positives. Some of the question that it tries to solve are:
Is the model predicting the anomalies? Is the model identifying the cats in the data?
Then, maybe you need the prediction of 0 or False values. Follow the matrix and understand it, is the best way to improve!

Does SciKit Have A InHouse Function That Tallies The Accuracy For Each Y Solution?

I have LinearSVC algorithm that predicts some data for stock. It has a 90% acc rating, but I think this might be due to the fact that some y's are far more likely than others. I want to see if there is a way to see if for each y I've defined, how accurately that y was predicted.
I haven't seen anything like this in the docs, but it just makes sense to have it.
If what your really want is a measure of confidence rather than actual probabilities, you can use the method LinearSVC.decision_function(). See the documentation or the probability calibration CalibratedClassifierCV using this documentation.
You can use a confusion matrix representation implemented in SciKit to generate an accuracy matrix between the predicted and real values of your classification problem for each individual attribute. The diagonal represents the raw accuracy, which can easily be converted to a percentage accuracy.

Confusion matrix for LDA

I’m trying to check the performance of my LDA model using a confusion matrix but I have no clue what to do. I’m hoping someone can maybe just point my in the right direction.
So I ran an LDA model on a corpus filled with short documents. I then calculated the average vector of each document and then proceeded with calculating cosine similarities.
How would I now get a confusion matrix? Please note that I am very new to the world of NLP. If there is some other/better way of checking the performance of this model please let me know.
What is your model supposed to be doing? And how is it testable?
In your question you haven't described your testable assessment of the model the results of which would be represented in a confusion matrix.
A confusion matrix helps you represent and explore the different types of "accuracy" of a predictive system such as a classifier. It requires your system to make a choice (e.g. yes/no, or multi-label classifier) and you must use known test data to be able to score it against how the system should have chosen. Then you count these results in the matrix as one of the combination of possibilities, e.g. for binary choices there's two wrong and two correct.
For example, if your cosine similarities are trying to predict if a document is in the same "category" as another, and you do know the real answers, then you can score them all as to whether they were predicted correctly or wrongly.
The four possibilities for a binary choice are:
Positive prediction vs. positive actual = True Positive (correct)
Negative prediction vs. negative actual = True Negative (correct)
Positive prediction vs. negative actual = False Positive (wrong)
Negative prediction vs. positive actual = False Negative (wrong)
It's more complicated in a multi-label system as there are more combinations, but the correct/wrong outcome is similar.
About "accuracy".
There are many kinds of ways to measure how well the system performs, so it's worth reading up on this before choosing the way to score the system. The term "accuracy" means something specific in this field, and is sometimes confused with the general usage of the word.
How you would use a confusion matrix.
The confusion matrix sums (of total TP, FP, TN, FN) can fed into some simple equations which give you, these performance ratings (which are referred to by different names in different fields):
sensitivity, d' (dee-prime), recall, hit rate, or true positive rate (TPR)
specificity, selectivity or true negative rate (TNR)
precision or positive predictive value (PPV)
negative predictive value (NPV)
miss rate or false negative rate (FNR)
fall-out or false positive rate (FPR)
false discovery rate (FDR)
false omission rate (FOR)
Accuracy
F Score
So you can see that Accuracy is a specific thing, but it may not be what you think of when you say "accuracy"! The last two are more complex combinations of measure. The F Score is perhaps the most robust of these, as it's tuneable to represent your requirements by combining a mix of other metrics.
I found this wikipedia article most useful and helped understand why sometimes is best to choose one metric over the other for your application (e.g. whether missing trues is worse than missing falses). There are a group of linked articles on the same topic, from different perspectives e.g. this one about search.
This is a simpler reference I found myself returning to: http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html
This is about sensitivity, more from a science statistical view with links to ROC charts which are related to confusion matrices, and also useful for visualising and assessing performance: https://en.wikipedia.org/wiki/Sensitivity_index
This article is more specific to using these in machine learning, and goes into more detail: https://www.cs.cornell.edu/courses/cs578/2003fa/performance_measures.pdf
So in summary confusion matrices are one of many tools to assess the performance of a system, but you need to define the right measure first.
Real world example
I worked through this process recently in a project I worked on where the point was to find all of few relevant documents from a large set (using cosine distances like yours). This was like a recommendation engine driven by manual labelling rather than an initial search query.
I drew up a list of goals with a stakeholder in their own terms from the project domain perspective, then tried to translate or map these goals into performance metrics and statistical terms. You can see it's not just a simple choice! The hugely imbalanced nature of our data set skewed the choice of metric as some assume balanced data or else they will give you misleading results.
Hopefully this example will help you move forward.

Loss functions in LightFM

I recently came across LightFM while learning to train a recommender system. And so far what I know is that it utilizes loss functions which are logistic, BPR, WARP and k-OS WARP. I did not go through the math behind all these functions. Now what I am confused about is that how will I know that which loss function to use where?
From lightfm model documentation page:
logistic: useful when both positive (1) and negative (-1) interactions are present.
BPR: Bayesian Personalised Ranking 1 pairwise loss. Maximises the prediction difference between a positive example and a randomly chosen negative example. Useful when only positive interactions are present and optimising ROC AUC is desired.
WARP: Weighted Approximate-Rank Pairwise [2] loss. Maximises the rank of positive examples by repeatedly sampling negative examples until rank violating one is found. Useful when only positive interactions are present and optimising the top of the recommendation list (precision#k) is desired.
k-OS WARP: k-th order statistic loss [3]. A modification of WARP that uses the k-the positive example for any given user as a basis for pairwise updates.
Everything boils down to how your dataset is structured and what kind of user interacions you're looking at. Obviously one approach would be to include the loss function in your parameter grid when going through hyperparameter tuning (at least that's what I did) and check model accuracy. I find investingating why a given loss function performed better/worse on a dataset as a good learning exercise.

Sensitivity Vs Positive Predicted Value - which is best?

I am trying to build a model on a class imbalanced dataset (binary - 1's:25% and 0's 75%). Tried with Classification algorithms and ensemble techniques. I am bit confused on below two concepts as i am more interested in predicting more 1's.
1. Should i give preference to Sensitivity or Positive Predicted Value.
Some ensemble techniques give maximum 45% of sensitivity and low Positive Predicted Value.
And some give 62% of Positive Predicted Value and low Sensitivity.
2. My dataset has around 450K observations and 250 features.
After power test i took 10K observations by Simple random sampling. While selecting
variable importance using ensemble technique's the features
are different compared to the features when i tried with 150K observations.
Now with my intuition and domain knowledge i felt features that came up as important in
150K observation sample are more relevant. what is the best practice?
3. Last, can i use the variable importance generated by RF in other ensemple
techniques to predict the accuracy?
Can you please help me out as am bit confused on which w
The preference between Sensitivity and Positive Predictive value depends on your ultimate goal of the analysis. The difference between these two values is nicely explained here: https://onlinecourses.science.psu.edu/stat507/node/71/
Altogether, these are two measures that look at the results from two different perspectives. Sensitivity gives you a probability that a test will find a "condition" among those you have it. Positive Predictive value looks at the prevalence of the "condition" among those who is being tested.
Accuracy is depends on the outcome of your classification: it is defined as (true positive + true negative)/(total), not variable importance's generated by RF.
Also, it is possible to compensate for the imbalances in the dataset, see https://stats.stackexchange.com/questions/264798/random-forest-unbalanced-dataset-for-training-test

Resources