Hypermarameters optimization in Gaussian Process in scikitlearn - scikit-learn

Are the hyper-parameters in Gaussian Process Regresor optimized during the fitting in scikit-learn?
In the page
https://scikit-learn.org/stable/modules/gaussian_process.html
it is said:
"The hyperparameters of the kernel are optimized during fitting of GaussianProcessRegressor by maximizing the log-marginal-likelihood (LML) based on the passed optimizer"
So, it is not required, for instance, to optimize it by using grid earch?

A hyperparameter is something that you need to specify, usually, the best way to do it is within a pipeline ( series of steps) in which you try many hyperparameters and get the best one. Here is an example of just trying different hyperparameters for a k-means in which you give a list of hyperparameters (n_neighbors for K-Means) in order to see which ones work best! Hope it helps you!
neighbors = np.arange(1, 9)
train_accuracy = np.empty(len(neighbors))
test_accuracy = np.empty(len(neighbors))
# Loop over different values of k
for i, k in enumerate(neighbors):
# Setup a k-NN Classifier with k neighbors: knn
knn = KNeighborsClassifier(n_neighbors= k)
# Fit the classifier to the training data
knn.fit(X_train,y_train)
#Compute accuracy on the training set
train_accuracy[i] = knn.score(X_train, y_train)
knn.predict(X_test)
#Compute accuracy on the testing set
test_accuracy[i] = knn.score(X_test, y_test)
# Generate plot
plt.title('k-NN: Varying Number of Neighbors')
plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy')
plt.plot(neighbors, train_accuracy, label = 'Training Accuracy')
plt.legend()
plt.xlabel('Number of Neighbors')

Related

How to add more features in multi text classification?

I have a retail dataset with product_description, price, supplier, category as columns.
I used product_description as feature:
from sklearn import model_selection, preprocessing, naive_bayes
# split the dataset into training and validation datasets
train_x, valid_x, train_y, valid_y = model_selection.train_test_split(df['product_description'], df['category'])
# label encode the target variable
encoder = preprocessing.LabelEncoder()
train_y = encoder.fit_transform(train_y)
valid_y = encoder.fit_transform(valid_y)
tfidf_vect = TfidfVectorizer(analyzer='word', token_pattern=r'\w{1,}', max_features=5000)
tfidf_vect.fit(df['product_description'])
xtrain_tfidf = tfidf_vect.transform(train_x)
xvalid_tfidf = tfidf_vect.transform(valid_x)
classifier = naive_bayes.MultinomialNB().fit(xtrain_tfidf, train_y)
# predict the labels on validation dataset
predictions = classifier.predict(xvalid_tfidf)
metrics.accuracy_score(predictions, valid_y) # ~20%, very low
Since the accuracy is very low, I want to add the supplier and price as features too. How can I incorporate this in the code?
I have tried other classifiers like LR, SVM, and Random Forrest, but they had (almost) the same outcome.
The TF-IDF vectorizer returns a matrix: one row per example with the scores. You can modify this matrix as you wish before feeding it into the classifier.
Prepare your additional features as a NumPy array of shape: number of examples × number of features.
Use np.concatenate with axis=1.
Fit the classifier as you did before.
It is usually a good idea to normalize real-valued features. Also, you can try different classifiers: Logistic Regression or SVM might do a better job for real-valued features than Naive Bayes.

Scaling of stock data

I am trying to apply machine learning on stock prediction, and I run into problem regarding scaling on future unseen (much higher) stock close value.
Lets say I use random forrest regression on predicting stock price. I break the data into train set and test set.
For the train set, I use standardscaler, and do fit and transform
And then I use regressor to fit
For the test set, I use standardscaler, and do transform
And then I use regressor to predict, and compare to test label
If I plot predict and test label on a graph, predict seems to max out or ceiling. The problem is that standardscaler fit on train set, test set (later in the timeline) have much higher value, the algorithm does not know what to do with these extreme data
def test(X, y):
# split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, shuffle=False)
# preprocess the data
pipeline = Pipeline([
('std_scaler', StandardScaler()),
])
# model = LinearRegression()
model = RandomForestRegressor(n_estimators=20, random_state=0)
# preprocessing fit transform on train data
X_train = pipeline.fit_transform(X_train)
# fit model on train data with train label
model.fit(X_train, y_train)
# transform on test data
X_test = pipeline.transform(X_test)
# predict on test data
y_pred = model.predict(X_test)
# print(np.sqrt(mean_squared_error(y_test, y_pred)))
d = {'actual': y_test, 'predict': y_pred}
plot_data = pd.DataFrame.from_dict(d)
sns.lineplot(data=plot_data)
plt.show()
What should be done with the scaling?
This is what I got for plotting prediction, actual close price vs time
The problem mainly comes from the model you are using. RandomForest regressor is created upon Decision Trees. It is learning to map an input to an output for every examples in the training set. Consequently RandomForest regressor will work for middle values but for extreme values that it hasn't seen during training it will of course perform has your picture is showing.
What you want, is to learn a function directly using linear/polynomial regression or more advanced algorithms like ARIMA.

Sklearn logistic regression - adjust cutoff point

I have a logistic regression model trying to predict one of two classes: A or B.
My model's accuracy when predicting A is ~85%.
Model's accuracy when predicting B is ~50%.
Prediction of B is not important however prediction of A is very important.
My goal is to maximize the accuracy when predicting A. Is there any way to adjust the default decision threshold when determining the class?
classifier = LogisticRegression(penalty = 'l2',solver = 'saga', multi_class = 'ovr')
classifier.fit(np.float64(X_train), np.float64(y_train))
Thanks!
RB
As mentioned in the comments, procedure of selecting threshold is done after training. You can find threshold that maximizes utility function of your choice, for example:
from sklearn import metrics
preds = classifier.predict_proba(test_data)
tpr, tpr, thresholds = metrics.roc_curve(test_y,preds[:,1])
print (thresholds)
accuracy_ls = []
for thres in thresholds:
y_pred = np.where(preds[:,1]>thres,1,0)
# Apply desired utility function to y_preds, for example accuracy.
accuracy_ls.append(metrics.accuracy_score(test_y, y_pred, normalize=True))
After that, choose threshold that maximizes chosen utility function. In your case choose threshold that maximizes 1 in y_pred.

Tensorflow- How to display accuracy rate for a linear regression model

I have a linear regression model that seems to work. I first load the data into X and the target column into Y, after that I implement the following...
X_train, X_test, Y_train, Y_test = train_test_split(
X_data,
Y_data,
test_size=0.2
)
rng = np.random
n_rows = X_train.shape[0]
X = tf.placeholder("float")
Y = tf.placeholder("float")
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
pred = tf.add(tf.multiply(X, W), b)
cost = tf.reduce_sum(tf.pow(pred-Y, 2)/(2*n_rows))
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(cost)
init = tf.global_variables_initializer()
init_local = tf.local_variables_initializer()
with tf.Session() as sess:
sess.run([init, init_local])
for epoch in range(FLAGS.training_epochs):
avg_cost = 0
for (x, y) in zip(X_train, Y_train):
sess.run(optimizer, feed_dict={X:x, Y:y})
# display logs per epoch step
if (epoch + 1) % FLAGS.display_step == 0:
c = sess.run(
cost,
feed_dict={X:X_train, Y:Y_train}
)
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c))
print("Optimization Finished!")
accuracy, accuracy_op = tf.metrics.accuracy(labels=tf.argmax(Y_test, 0), predictions=tf.argmax(pred, 0))
print(sess.run(accuracy))
I cannot figure out how to print out the model's accuracy. For example, in sklearn, it is simple, if you have a model you just print model.score(X_test, Y_test). But I do not know how to do this in tensorflow or if it is even possible.
I think I'd be able to calculate the Mean Squared Error. Does this help in any way?
EDIT
I tried implementing tf.metrics.accuracy as suggested in the comments but I'm having an issue implementing it. The documentation says it takes 2 arguments, labels and predictions, so I tried the following...
accuracy, accuracy_op = tf.metrics.accuracy(labels=tf.argmax(Y_test, 0), predictions=tf.argmax(pred, 0))
print(sess.run(accuracy))
But this gives me an error...
FailedPreconditionError (see above for traceback): Attempting to use uninitialized value accuracy/count
[[Node: accuracy/count/read = IdentityT=DT_FLOAT, _class=["loc:#accuracy/count"], _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
How exactly does one implement this?
Turns out, since this is a multi-class Linear Regression problem, and not a classification problem, that tf.metrics.accuracy is not the right approach.
Instead of displaying the accuracy of my model in terms of percentage, I instead focused on reducing the Mean Square Error (MSE) instead.
From looking at other examples, tf.metrics.accuracy is never used for Linear Regression, and only classification. Normally tf.metric.mean_squared_error is the right approach.
I implemented two ways of calculating the total MSE of my predictions to my testing data...
pred = tf.add(tf.matmul(X, W), b)
...
...
Y_pred = sess.run(pred, feed_dict={X:X_test})
mse = tf.reduce_mean(tf.square(Y_pred - Y_test))
OR
mse = tf.metrics.mean_squared_error(labels=Y_test, predictions=Y_pred)
They both do the same but obviously the second approach is more concise.
There's a good explanation of how to measure the accuracy of a Linear Regression model here.
I didn't think this was clear at all from the Tensorflow documentation, but you have to declare the accuracy operation, and then initialize all global and local variables, before you run the accuracy calculation:
accuracy, accuracy_op = tf.metrics.accuracy(labels=tf.argmax(Y_test, 0), predictions=tf.argmax(pred, 0))
# ...
init_global = tf.global_variables_initializer
init_local = tf.local_variables_initializer
sess.run([init_global, init_local])
# ...
# run accuracy calculation
I read something on Stack Overflow about the accuracy calculation using local variables, which is why the local variable initializer is necessary.
After reading the complete code you posted, I noticed a couple other things:
In your calculation of pred, you use
pred = tf.add(tf.multiply(X, W), b). tf.multiply performs element-wise multiplication, and will not give you the fully connected layers you need for a neural network (which I am assuming is what you are ultimately working toward, since you're using TensorFlow). To implement fully connected layers, where each layer i (including input and output layers) has ni nodes, you need separate weight and bias matrices for each pair of successive layers. The dimensions of the i-th weight matrix (the weights between the i-th layer and the i+1-th layer) should be (ni, ni + 1), and the i-th bias matrix should have dimensions (ni + 1, 1). Then, going back to the multiplication operation - replace tf.multiply with tf.matmul, and you're good to go. I assume that what you have is probably fine for a single-class linear regression problem, but this is definitely the way you want to go if you plan to solve a multiclass regression problem or implement a deeper network.
Your weight and bias tensors have a shape of (1, 1). You give the variables the initial value of np.random.randn(), which according to the documentation, generates a single floating point number when no arguments are given. The dimensions of your weight and bias tensors need to be supplied as arguments to np.random.randn(). Better yet, you can actually initialize these to random values in Tensorflow: W = tf.Variable(tf.random_normal([dim0, dim1], seed = seed) (I always initialize random variables with a seed value for reproducibility)
Just a note in case you don't know this already, but non-linear activation functions are required for neural networks to be effective. If all your activations are linear, then no matter how many layers you have, it will reduce to a simple linear regression in the end. Many people use relu activation for hidden layers. For the output layer, use softmax activation for multiclass classification problems where the output classes are exclusive (i.e., where only one class can be correct for any given input), and sigmoid activation for multiclass classification problems where the output classes are not exlclusive.

Very few distinct prediction probabilities for CV instances with sparse SVM

I’m having an issue using the prediction probabilities for sparse SVM, where many of the predictions come out the same for my test instances. These probabilities are produced during cross validation, and when I plot an ROC curve for the folds, the results look very strange, as there are a handful of clustered points on the graph. Here is my cross validation code, I based it off of the samples on the scikit website:
skf = StratifiedKFold(y, n_folds=numfolds)
for train_index, test_index in skf:
#split the training and testing sets
X_train, X_test = X_scaled[train_index], X_scaled[test_index]
y_train, y_test = y[train_index], y[test_index]
#train on the subset for this fold
print 'Training on fold ' + str(fold)
classifier = svm.SVC(C=C_val, kernel='rbf', gamma=gamma_val, probability=True)
probas_ = classifier.fit(X_train, y_train).predict_proba(X_test)
#Compute ROC curve and area the curve
fpr, tpr, thresholds = roc_curve(y_test, probas_[:, 1])
mean_tpr += interp(mean_fpr, fpr, tpr)
mean_tpr[0] = 0.0
roc_auc = auc(fpr, tpr)
I’m just trying to figure out if there’s something I’m obviously missing here, since I used this same training set and SVM parameters with libsvm and got much better results. When I used libsvm and printed out the distances from the hyperplane for the CV test instances and then plotted the ROC, it came out much more like I expected, and a much better AUC.

Resources