Override method in uml - uml

I am trying to create UML diagram. For example I have a class A with method a() and class B that extends A and overrides method a(). Is there any standard to indicate overridden methods in UML?

No, there is no specific indicator for operations that override operations on a parent class.
If the signature matches it overrides the operation on the parent.

The norms says on p. 101:
Inherited members may also be shown in a lighter color to help distinguish them from non-inherited members. A conforming implementation does not need to provide this option.
Sadly, my tool (EA) does not support that.
The simplest method is to duplicate only the operation signatures of those operations you are going to override. That will make it clear that you are overidding something.
By just looking to Class2 there is no way to tell that b is actually an override. However, if someone wants to deal with Class2 he must know that it's a subclass - and thus will know that b is an override.
Note: The UML 2.5 specs are ambigous about the caret use. While (on p. 100) they say
Members that are inherited by a Classifier may be shown on a diagram of that Classifier by prepending a caret ’^’ symbol ...
the syntax below explictely mentions only properties and connectors and this passage
Analogous notations may be used for all NamedElements that are inheritedMembers of a Classifier to indicate that they are inherited.

As indicated in that answer https://stackoverflow.com/a/28932482/2458991 there is a specific indicator to indicate a member (for instance an operation) is inherited, but that indicator is not mandatory, the norm says :
Members that are inherited by a Classifier may be shown on a diagram of that Classifier by prepending a caret ’^’ symbol to the textual representation that would be shown if the member were not inherited.
So, having :
B does not override oper
But having :
we cannot know except if we are sure the ^ is always used in the model as in previous diagram
[edit]
Notice the norm use two times the words member (and not properties) in that sentence, and Class inherits (indirectly) Classifier, so that applies for operations.
As noticed in an other answer the norm says also :
Inherited members may also be shown in a lighter color to help distinguish them from non-inherited **members*.
so again two times members rather than properties, and the fact they use also clearly reference the fact there is an other way which is the ^. So two consistent sentences indicating ^ applies to operations
[warning]
I used BoUML to make the diagrams and in the first you can see "^oper()" but I 'cheated' to do that naming the corresponding operation "^oper", there is no option to show a ^ in a diagram to indicate an operation or other member is inherited

Related

How to represent in UML that subclasses of an abstract class should be singleton

Suppose an abstract class X and its subclasses Y and Z. How do I represent in UML class diagrams that Y and Z should be singletons. Is it possible to represent that all X subclasses must be singletons?
To specify that all subclasses of X are singletons, you can write a constraint in between braces: { every subclass of X is a singleton }. This constraint should be put in a constraints compartment in the class rectangle.
The UML 2.5 specification, §7.6.4 defines the notation for constraints in general and §9.2.4 specifies how to show the constraints of a classifier:
If a Classifier owns Constraints, a conforming tool may implement a compartment to show the owned Constraints listed
within a separate compartment of the owning Classifier’s rectangle. The name of this optional compartment is
“constraints.”
Alternatively, you could give a singleton indication on each and every subclass of X. From your wording, I assume that that is not what you want. Anyway, the latest version of UML (2.5.1) does not have a standard way to indicate that a class is a singleton. Some people indicate it by writing 1 in the top right corner of the rectangle. However, that is not valid UML. You may use that for parts, but not for classes. Instead, you could invent your own stereotype ≪singleton≫.
There is another StackOverflow question about this topic.
Here's another possibility: you can adorn the class with a <<singleton>> stereotype. I always used it that way and the coder knows how to handle that. It's no UML standard, but see the last sentence.
§11.4.4 of the UML 2.5 spec says:
A usage dependency may relate an InstanceSpecification to a
constructor for a Class, describing the single value returned by the
constructor Operation. The Operation is the client, the created
instance the supplier.
If you create a GeneralizationSet that has the meta-property isComplete=true (to say that all possible subclasses are accounted for), and you connect one InstanceSpecification to each constructor by a usage dependency, the model means that every class is a singleton.

UML dependency or association in class diagram

I have class Controller in my java project, which has method like this:
As you can see, in the first line I am getting Singleton instance of ActualModes class and call method getActualModes().
So the first question is, which relatinship I should use in class diagram.
After that I am creating new instane of ModeContext class and then call method executeStrategy. In this case, which relatiship is better ?
It should be like this:
Access to the singleton (note the stereotype which is just convenient and no obligation or general standard) is anonymous and so you just have a dependency. The ModeContext in contrast uses a private (I don't know the scoping rules of the language you used, so I made it pivate) property called context. Note the dot which is saying exactly that.
Disclaimer: UML does not specify a mapping between Java and UML, so every answer to your question is open for debate.
I think both relationships are dependencies, drawn as dashed arrows from Controller to ActualModes and from Controller to ModeContext. The definition of 'dependency' according to the UML 2.5 specification (§7.8.4.1) is:
A Dependency is a Relationship that signifies that a single model Element or a set of model Elements requires other
model Elements for their specification or implementation.
An example of a type of relationship which is in my opinion less suited, is the association, although its definition (§11.5) is quite broad:
An Association classifies a set of tuples representing links between typed instances. (...) An Association specifies a semantic relationship that can occur between typed instances.
One could argue that there are links between Controller and the other two classes, in the form of variables, but these variables are local method variables, which exist only temporarily during the execution of the method. Associations represent more durable links, e.g. class members - as far as I understand UML and as far as I have seen associations used in practice.

In UML class diagrams, is there specific differences between operations and constructors?

I'm taking a Data Analysis course, we're covering UML class diagrams. I keep getting confused by the terminology of methods (operations) and constructors. What is the difference between a method and a constructor? Any explanation would be greatly appreciated, the light bulb for this just hasn't lit yet and hope some outside perspectives will help. Thank you in advance!
Some of the confusion has historical reasons where terms were defined only partially (or not at all). The current UML spec 2.5 defines on p. 114
9.6.3.1 Operations
An Operation is a BehaviorialFeature of an Interface, DataType, or Class. An Operation may be directly invoked on instances of its featuringClassifiers. The Operation specifies the name, type, Parameters, and Constraints for such invocations.
Sounds a bit like blurb, but basically this is what a programmer would call a function.
Method in contrast (which formerly has been used alternatively to Operation) is defined on p. 13
For example, an operation owned by a class may have a related method that defines its detailed behavior.
So the method is the "how to" of an operation and can be described by various means like e.g. a StateMachine and more.
Finally a Constructor is a certain operation which by is executed during initialization of an object. On p. 15:
Therefore, when modeling the detailed behavior of the instantiation of a classifier, it is a modeler responsibility to ensure that the modeled behavior carries out the proper initialization of any attributes with default values once the object is created. (This is often done by encapsulating the instantiation behavior for a class in a constructor operation – see sub clause 11.4 – in which case the initialization of the attributes becomes an implicit postcondition for the constructor.)

When are IsRoot, IsAbstract & IsLeaf in UML used?

I came across the following description of IsRoot, IsAbstract & IsLeaf however do not understand when you would used them.
Excerpt from http://www2.sys-con.com/itsg/virtualcd/dotnet/archives/0108/clark/index.htm:
By checking the IsRoot check box, you are restricting the class from inheriting from other classes. Checking IsAbstract restricts the class from being instantiated, and forces clients to instantiate a derived class to access the functionality of the class. Checking IsLeaf indicates that the class is sealed. Sealed classes are noninheritable and help to limit the depth of an inheritance chain.
My understanding
IsRoot seems to suggest that it is a superclass
IsAbstract seems to suggest it is an abstract class
IsLeaf is a class that cannot be inherited but can be instantiated.
Can someone give me a real-world example of a model that uses these? For example I can imagine class such as 'car' that is a superclass and is abstract and beneath it you would have classes such as 'Volvo', 'Chevrolet', etc.
isRoot no longer exists in UML2. In UML 1 it means (from the specification) :
isRoot: Specifies whether the GeneralizableElement is a root
GeneralizableElement with no ancestors. True indicates that it
may not have ancestors, false indicates that it may have ancestors
(whether or not it actually has any ancestors at the moment).
isAbstract means that the element is incomplete and cannot be instantiated.
If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract
classifier is intended to be used by other classifiers (e.g., as the target of general metarelationships or generalization
relationships). Default value is false.
isLeaf means that you cannot redefine the element, same as final in some programming languages.
Indicates whether it is possible to further redefine a RedefinableElement. If the value is true, then it is not possible to
further redefine the RedefinableElement. Default
value is false.
Not real-life examples, but links to some.
isRoot: I think this is no longer part of UML. That article is from 2004, which was around the time UML 2 came out, and I doubt Visio supported it. It still may not support it.
isAbstract: it's a good idea to make all superclasses abstract so that you cannot create an instance that is not a member of the subclasses. Classes are essentially sets of instances. What does it mean for an instance to be a member of a superset and none of the subsets? It's unclear exactly what the classification of such an instance is, and it may inadvertently change over time. It's also a good idea to make the subclasses disjoint (non-overlapping) and covering (all known subclasses specified). There's more details and a real-life example of this using Avians in Lahman's book.
isLeaf: essentially keeps people from overriding your code. I can't verify this quotation, but supposedly the The Unified Modeling Language Reference Manual says:
Being a leaf or being constrained to be a leaf are not fundamental
semantic properties but rather software engineering mechanisms to
control human behavior.
Does that help?

UML Questions about 'abstract' and stereotypes

hi every body i'm trying to understand UML but there are some questions about it
In UML what is the significance of tagging a class with the stereotype <<abstract>>?
and how to express this constraint as an invariant,
A stereotype "abstract" does not exist - an abstract class should be depicted using italic font. Abstract means that a class cannot be instantiated. It needs a subclass to do so. So as a pseudo-code constraint this would mean
for all instances i of MyAbstractClass holds: i.actualClass != MyAbstractClass
or in ocl for MyAbstractClass holds
self.allInstances()->forAll(i: MyAbstractClass | i.classifier <> self)
As the word 'abstract' was not displayed in your first question version, I expanded on stereotypes in general:
First of all: When learning UML, stereotypes should not be the first things you look into. They are rather complex.
Stereotypes or keywords (both denoted with <<MyStereotype>>) do not have a general meaning. It is defined by the specific stereotype. Commonly you cannot express a stereotype as an invariant instead.
But some other aspects of UML can be shown the same way: A class from the UML Metalevel is marked with <<metaclass>> even though it does not have a stereotype or even is of different actual type. The Stereotypes themselves are shown with a <<stereotype>> marker (even if they are instances of a special class).
An example for a custom stereotype could be "Service". You could mark classes with it which represent a Service. There could be a constraint which tells you that a "Service" must implement a special Interface. In this case you could express this constraint as a (boring) invariant. But probably it is even just a marker. In the latter case you can use a keyword as replacement.
I realize this thread is a couple of years old, but I came to it when it was referenced by someone else, as supporting the assertion that the «abstract» stereotype isn't supported by the UML spec. That assertion isn't quite accurate, and I'd like to explain why. I'll start by clarifying what abstract classes are.
Abstract classes are definitions of classes that don't include complete implementation. Therefore, abstract classes can't be directly instantiated; they have to be specialized (inherited). Abstract classes are notated by italicizing the class name and the methods that are abstract, and additionally by optionally adding an {abstract} property to the class name and/or to the operations (methods, we usually say, but methods are actually the "method" by which the operation is implemented) that are abstract.
Interfaces are actually a specific type of abstract class: a class with zero implementation. Their notation is different from other types of abstract classes (don't italicize, use the «interface» keyword, and notate all the specialization arrows with dotted lines). So, as Christian says here, there is standard notation for abstract classes--at least, there is in class diagrams.
Now, while it is true, as Christian also says, that the «abstract» stereotype doesn't exist, it is also true that you can create it if you want to, and that doing so is supported by the UML spec. It's unlikely that you'll have a reason to (at least in class diagrams), but you still can.
A stereotype is an "extensibility mechanism" for UML (there are three: stereotypes, tagged values, and constraints). It allows you to more specifically define some sort of element. Stereotypes are applied to classes (metaclasses actually, metaclasses are classes whose instances are also classes). A number of stereotypes are pre-defined "Standard Stereotypes" (in UML 1.4 they were called "Standard Elements"). Examples of these are «metaclass» (again, a class whose instances are also classes) and «file» (a physical file in the context of the system developed).
Stereotypes are a type of keyword. The spec (Superstructure 2.0, Annex B, p. 663) has this to say about keywords:
UML keywords are reserved words that are an integral part of the UML
notation and normally appear as text annotations attached to a UML
graphic element or as part of a text line in a UML diagram. These
words...cannot be used to name user-defined model elements where such naming would result in ambiguous interpretation of
the model. For example, the keyword “trace” is a system-defined
stereotype of Abstraction (see Annex C, “Standard Stereotypes”) and,
therefore, cannot be used to define any user-defined stereotype.
In UML, keywords are used for four different purposes:
To distinguish a particular UML concept (metaclass) from others sharing the same general graphical form...
To distinguish a particular kind of relationship between UML concepts (meta-association) from other relationships sharing the same general graphical form...
To specify the value of some modifier attached to a UML concept (meta-attribute value)...
To indicate a Standard Stereotype (see Annex C, “Standard Stereotypes”)...
Keywords are always enclosed in guillemets («keyword»), which serve as visual cues to more readily distinguish when a keyword is being used...In addition to identifying keywords, guillemets are also used to distinguish the usage of stereotypes defined in user profiles. This means that:
Not all words appearing between guillemets are necessarily keywords (i.e., reserved words), and
words appearing in guillemets do not necessarily represent stereotypes.
In other words, you can create any stereotype that you want, so long as it isn't a keyword. Since "abstract" is not a keyword, it follows that you can create an «abstract» stereotype.
In order to do so, however, you would have to go to some trouble, more trouble in UML 2.0 and above than in UML 1.4. UML 1.4 simply stated that a stereotype was an extension mechanism for the UML spec. One could simply define the stereotype, apply it to whichever part of the UML metamodel one wanted, and document the change. UML 2.0 wanted to formalize the relationship of a stereotype to a UML metaclass (any item on a UML diagram is a metaclass, and part of the UML metamodel). So, they came up with Profiles. This sample diagram shows how profiles work:
Now, that black arrow may look a bit strange, since you don't see it in any context but this one. UML 2.0 introduced the concept of an Extension, which it defines as "used to indicate that the properties of a metaclass are extended through a stereotype." This black arrow indicates an extension.
I'll quote Tom Pender (The UML Bible, Wiley Publishing, 2004) for an explanation of this diagram, since he does a better job than the spec (and I certainly can't improve on it):
It shows that a Component is extended by a Bean stereotype, which is required. The Bean stereotype is an abstract type, with two subtypes - Entity and Session. Each instance of Component, therefore, must be extended by an instance of either the Entity stereotype or the Session stereotype. Remember that a stereotype is a kind of class that can have properties - in this case, a Session stereotype has an attribute named state. This corresponds to a tagged definition whose value specifies the state of the Session. The tagged value is an enumeration, StateKind, which has either a stateless or stateful value.
The Component has a constraint on it, displayed in the note attached to the Component symbol, which states that a Component cannot be generalized or
specialized.
The diagram also shows that an Interface metaclass is extended by the Remote and Home stereotypes. The EJB package has a constraint, displayed in the note that sits in the package, that states a Bean must realize exactly one Home interface.
So, you can indeed use an «abstract» stereotype if you have reason to go to the trouble of creating it. The main reason that anyone might want to is to represent an abstract class in some place other than a class diagram.

Resources