NodeJS Monitoring Website (Worker Threads?/Multi Process?) - node.js

I am doing small project of application that will monitor some servers.
It will base on telnet port check, ping, and also it will use libraries to connect directly to databases (MSSQL, Oracle, MySQL) to check their status.
I wonder what will be the best effective solution for this idea, currently with around 30 servers it works quite smooth, around 2.5sec to check status for all of them (running async). However I am worried that in the future with more servers it might get worse. Hence thinking about using some alternative like Worker Threads maybe? or some multi processing? Any ideas? Everything is happening in internal network so I do not expect huge latency.
Thank you in advance.

Have you ever tried the PM2 cluster mode:
https://pm2.keymetrics.io/docs/usage/cluster-mode/

The telnet stuff is TCP, which Node.js does very well using OS-level networking events. The connections to databases can vary. In the case of Oracle, you'll likely be using the node-oracledb. Those are SQL*Net connections that rely on the OCI libs and Node.js' thread pool. The thread pool defaults to four threads, but you can grow it up to 128 per Node.js process. See this doc for info:
https://oracle.github.io/node-oracledb/doc/api.html#-143-connections-threads-and-parallelism
Having said all that, other than increasing the size of the thread pool, I wouldn't recommend you make any changes. Why fight fires before they're burning? No need to over-engineer things. You're getting acceptable performance given the current number of servers you have.
How many servers do you plan to add in, say, 5 years? What's the difference in timing if you run the status checks for half of the servers vs all of them? Perhaps you could use that kind of data to make an educated guess as to where things would go.
As you add new ones, keep track of the total time to check the status. Is it slipping? If so, look into where the time is being spent and write the solution that will help.

Related

Concurrent users without database

I can't seem to get this concept right in my head. If I have a website that gets 1 million concurrent users, without any databases at all, will I need to scale? I'm Using Node.js and Socket.IO. Also is there a way I could simulate something like this on my localhost?
Having one million user, or connections, on Socke.io, doesn't mean you have to scale, but depending on what they are doing, you would probably do. Having a data base adds storage but has nothing more to do with the need for scaling the Node.JS server.
You can create a test to try to insert as much as you want using a loop to connect and then try to emit an event for each of then.
For scaling node you can use a cluster. A single instance of Node.js runs in a single thread. To take advantage of multi-core systems, the user will sometimes want to launch a cluster of Node.js processes to handle the load. https://nodejs.org/api/cluster.html#cluster_cluster
To simulate high load, there are open source tools you can use for free: http://www.opensourcetesting.org/category/performance/

I'm not sure how to correctly configure my server setup

This is kind of a multi-tiered question in which my end goal is to establish the best way to setup my server which will be hosting a website as well as a service (using Socket.io) for an iOS (and eventually an Android) app. Both the app service and the website are going to be written in node.js as I need high concurrency and scaling for the app server and I figured whilst I'm at it may as well do the website in node because it wouldn't be that much different in terms of performance than something different like Apache (from my understanding).
Also the website has a lower priority than the app service, the app service should receive significantly higher traffic than the website (but in the long run this may change). Money isn't my greatest priority here, but it is a limiting factor, I feel that having a service that has 99.9% uptime (as 100% uptime appears to be virtually impossible in the long run) is more important than saving money at the compromise of having more down time.
Firstly I understand that having one node process per cpu core is the best way to fully utilise a multi-core cpu. I now understand after researching that running more than one per core is inefficient due to the fact that the cpu has to do context switching between the multiple processes. How come then whenever I see code posted on how to use the in-built cluster module in node.js, the master worker creates a number of workers equal to the number of cores because that would mean you would have 9 processes on an 8 core machine (1 master process and 8 worker processes)? Is this because the master process usually is there just to restart worker processes if they crash or end and therefore does so little it doesnt matter that it shares a cpu core with another node process?
If this is the case then, I am planning to have the workers handle providing the app service and have the master worker handle the workers but also host a webpage which would provide statistical information on the server's state and all other relevant information (like number of clients connected, worker restart count, error logs etc). Is this a bad idea? Would it be better to have this webpage running on a separate worker and just leave the master worker to handle the workers?
So overall I wanted to have the following elements; a service to handle the request from the app (my main point of traffic), a website (fairly simple, a couple of pages and a registration form), an SQL database to store user information, a webpage (probably locally hosted on the server machine) which only I can access that hosts information about the server (users connected, worker restarts, server logs, other useful information etc) and apparently nginx would be a good idea where I'm handling multiple node processes accepting connection from the app. After doing research I've also found that it would probably be best to host on a VPS initially. I was thinking at first when the amount of traffic the app service would be receiving will most likely be fairly low, I could run all of those elements on one VPS. Or would it be best to have them running on seperate VPS's except for the website and the server status webpage which I could run on the same one? I guess this way if there is a hardware failure and something goes down, not everything does and I could run 2 instances of the app service on 2 different VPS's so if one goes down the other one is still functioning. Would this just be overkill? I doubt for a while I would need multiple app service instances to support the traffic load but it would help reduce the apparent down time for users.
Maybe this all depends on what I value more and have the time to do? A more complex server setup that costs more and maybe a little unnecessary but guarantees a consistent and reliable service, or a cheaper and simpler setup that may succumb to downtime due to coding errors and server hardware issues.
Also it's worth noting I've never had any real experience with production level servers so in some ways I've jumped in the deep end a little with this. I feel like I've come a long way in the past half a year and feel like I'm getting a fairly good grasp on what I need to do, I could just do with some advice from someone with experience that has an idea with what roadblocks I may come across along the way and whether I'm causing myself unnecessary problems with this kind of setup.
Any advice is greatly appreciated, thanks for taking the time to read my question.

Controlling the flow of requests without dropping them - NodeJS

I have a simple nodejs webserver running, it:
Accepts requests
Spawns separate thread to perform background processing
Background thread returns results
App responds to client
Using Apache benchmark "ab -r -n 100 -c 10", performing 100 requests with 10 at a time.
Average response time of 5.6 seconds.
My logic for using nodejs is that is typically quite resource efficient, especially when the bulk of the work is being done by another process. Seems like the most lightweight webserver option for this scenario.
The Problem
With 10 concurrent requests my CPU was maxed out, which is no surprise since there is CPU intensive work going on the background.
Scaling horizontally is an easy thing to, although I want to make the most out of each server for obvious reasons.
So how with nodejs, either raw or some framework, how can one keep that under control as to not go overkill on the CPU.
Potential Approach?
Could accepting the request storing it in a db or some persistent storage and having a separate process that uses an async library to process x at a time?
In your potential approach, you're basically describing a queue. You can store incoming messages (jobs) there and have each process get one job at the time, only getting the next one when processing the previous job has finished. You could spawn a number of processes working in parallel, like an amount equal to the number of cores in your system. Spawning more won't help performance, because multiple processes sharing a core will just run slower. Keeping one core free might be preferred to keep the system responsive for administrative tasks.
Many different queues exist. A node-based one using redis for persistence that seems to be well supported is Kue (I have no personal experience using it). I found a tutorial for building an implementation with Kue here. Depending on the software your environment is running in though, another choice might make more sense.
Good luck and have fun!

Should each website be its own `node.js` process

We host about 150 websites (possibly scaling to 300+) that we are considering migrating to node.js. Most of the sites are fairly low traffic <1mil pageviews per month.
Should each website be it's own node.js process, or should we serve all websites using the same node.js process (or small set of load balanced processes). Is there a technical limit or a reasonable limit to the number of node processes per server?
Process per site: Feels inefficient, but I don't know if it actually is inefficient. Would ensure one buggy site doesn't affect other sites.
Process per core/small set of processes: Likely higher performance, but what happens when I need to update a sites codebase, won't it take down other sites? Also, code failures in one site would affect other sites.
Ideally, I would prefer one process per site so that we could host all sites from each worker server. That way when load increases we can just spin up another identical worker server and load balance between the two without having to arbitrarily say SiteA goes to ServerA and SiteB goes to ServerB. Any node.js gurus available to offer some wisdom?
All static file requests will be handled likely by Nginx or something like Varnish.
There are a lot of issues at play here. The big picture answer is, it depends... as it always does when you bring in the whole "performance" discussion. That being said, the simplest way to get a solid Node set up is to note the following basic facts about NodeJS, and I will also comment on their implications as they pertain to your questions.
The concurrency you get with Node works really good in certain situations, namely IO heavy operations. What we're really talking about here is minimizing the amount of downtime to wait for the next request. Because of this, Node works really well in an environment where there is one process per core on a machine. Node does really well at maximizing the amount of CPU available to serve requests under heavy load. This being said, if you have literally ZERO other work going on in your even loop, you can see minor performance increases (in terms of max requests/second/processor core) by having multiple node processes per core. But, I've never seen any benefit from increasing this number past 3. Even under circumstances where the entire event loop was literally just a file server.
On the process per site comment. This is a bad idea for many reasons. For one, a well put together node server can process thousands of requests per second. Our (company name omitted) servers, hosted through Amazon EC2 on medium clusters (lots of ram, mid CPU clock, 4 cores), typically fail around 3000 requests per second per cluster. Our servers do a fair bit of CPU work, for simple file servers I'm sure you can do much better. Strictly speaking, sure, per site, you will be able to serve more requests by launching each site in its own process/core/escalating quickly here! But it's not necessary from a cost and over complication of your architecture point of view. What I WOULD recommend, is investing in a setup with a lot of RAM. The ability for your server to cache often requested files will effect your performance infinitely more than launching an abundance of processes for a given machine.
On the whole RAM thing. The number of processes you want to launch for a given core is dependant on two things. One is how much synchronous work done in your event loop. The more synchronous work, the more time between a given request coming in and the event loop being ready to adress the next one. If you have a busy event loop, you will be in a situation where you require more processes/CPU Core. The other thing that can effect this, particularly relevant for file servers, is the amount of RAM. Node runs much better in a high ram environment, but you can say this about ANY file server really... What this has to do with, is the number of active asynchronous operations. One downside of the way node works, is under heavy loads, you can get a large number of event handlers active at once. This is great for concurrency/simplicity, however, if your server is busy waiting around for a lot of async disk/IO to happen it will slow down and crash much sooner than if you had plenty of RAM. If you don't have enough RAM to handle all of these event handlers, you will want to keep to the 1 process/core arrangement. Otherwise, it is easier for Node to spin up many event handlers simultaneously, and again cause you to crash sooner than you would otherwise.
I don't really have enough information to tell you what you SHOULD do. This depends entirely too much on the architecture of your specific server, sites, size of your sites, amount of data... etc. But these three pieces of knowledge are the basic things that help you get the most out of your Node server. To be honest, your idea about load balancing mixed with the considerations above, should do nicely for you. Surely, microoptimizations are possible, but if you do these things, you should easily see requests/second in the thousands before you start experiencing crashes because of DDOS type of conditions.
No, don't do it. Keep it simple! And check out http://12factor.net/.
A few hundred processes is nothing compared to the simplicity you otherwise lose. It would be a terrible decision, on so many levels, to have more than one site (or, "logical application unit") served by a single Node process.
If you're asking this question, you may want to explore Node more before you "migrate" to Node. Error handling and separation of concerns are more complicated in Node than in other situations. Specifically, neither the domain nor cluster APIs are mature. But really it's the philosophy of clean and simple application deployment that you'd be violating. I could go on and on.

Comet and node.js - how many simultaneous connections could we expect on an EC2 server?

With a comet server running on node.js - how many simultaneous connections could we expect to get out of an EC2 server?
Anyone done this before and found a reasonable limit?
Our particular application only needs to push data to the clients fairly infrequently, it's more the max simultaneous connections per server that is a worry for us. We're looking at somewhere between 200k - 500k i think, and i'm trying to figure out if comet is going to be workable without a monstrous fleet of servers...
If you are running Linux, get to know the contents of /proc/sys/net/ipv4
In particular, net.ipv4.netfilter.ip_conntrack_max will let you increase the maximum number of open connections, but when you start plugging in really big numbers you will run into other problems. For instance you might need to reduce orphan_retries because you will statistically be more likely to have orphans. And with really big numbers, it is entirely possible that kernel lookup algorithms will slow down significantly. You need to carefully tune the TCP settings.
If I were in your shoes, I would compare at least two OSes, such as Linux and FreeBSD or OpenSolaris/Illumos.
On FreeBSD you will need to change settings in /boot/loader.conf
On OpenSolaris/Illumos you will need to read the documentation for the ndd command.

Resources