Haskell: Typeclass vs passing a function - haskell

To me it seems that you can always pass function arguments rather than using a typeclass. For example rather than defining equality typeclass:
class Eq a where
(==) :: a -> a -> Bool
And using it in other functions to indicate type argument must be an instance of Eq:
elem :: (Eq a) => a -> [a] -> Bool
Can't we just define our elem function without using a typeclass and instead pass a function argument that does the job?

Yes. This is called "dictionary passing style". Sometimes when I am doing some especially tricky things, I need to scrap a typeclass and turn it into a dictionary, because dictionary passing is more powerful1, yet often quite cumbersome, making conceptually simple code look quite complicated. I use dictionary passing style sometimes in languages that aren't Haskell to simulate typeclasses (but have learned that that is usually not as great an idea as it sounds).
Of course, whenever there is a difference in expressive power, there is a trade-off. While you can use a given API in more ways if it is written using DPS, the API gets more information if you can't. One way this shows up in practice is in Data.Set, which relies on the fact that there is only one Ord dictionary per type. The Set stores its elements sorted according to Ord, and if you build a set with one dictionary, and then inserted an element using a different one, as would be possible with DPS, you could break Set's invariant and cause it to crash. This uniqueness problem can be mitigated using a phantom existential type to mark the dictionary, but, again, at the cost of quite a bit of annoying complexity in the API. This also shows up in pretty much the same way in the Typeable API.
The uniqueness bit doesn't come up very often. What typeclasses are great at is writing code for you. For example,
catProcs :: (i -> Maybe String) -> (i -> Maybe String) -> (i -> Maybe String)
catProcs f g = f <> g
which takes two "processors" which take an input and might give an output, and concatenates them, flattening away Nothing, would have to be written in DPS something like this:
catProcs f g = (<>) (funcSemi (maybeSemi listSemi)) f g
We essentially had to spell out the type we're using it at again, even though we already spelled it out in the type signature, and even that was redundant because the compiler already knows all the types. Because there's only one way to construct a given Semigroup at a type, the compiler can do it for you. This has a "compound interest" type effect when you start defining a lot of parametric instances and using the structure of your types to compute for you, as in the Data.Functor.* combinators, and this is used to great effect with deriving via where you can essentially get all the "standard" algebraic structure of your type written for you.
And don't even get me started on MPTC's and fundeps, which feed information back into typechecking and inference. I have never tried converting such a thing to DPS -- I suspect it would involve passing around a lot of type equality proofs -- but in any case I'm sure it would be a lot more work for my brain than I would be comfortable with.
--
1Unless you use reflection in which case they become equivalent in power -- but reflection can also be cumbersome to use.

Yes. That (called dictionary passing) is basically what the compiler does to typeclasses anyway. For that function, done literally, it would look a bit like this:
elemBy :: (a -> a -> Bool) -> a -> [a] -> Bool
elemBy _ _ [] = False
elemBy eq x (y:ys) = eq x y || elemBy eq x ys
Calling elemBy (==) x xs is now equivalent to elem x xs. And in this specific case, you can go a step further: eq has the same first argument every time, so you can make it the caller's responsibility to apply that, and end up with this:
elemBy2 :: (a -> Bool) -> [a] -> Bool
elemBy2 _ [] = False
elemBy2 eqx (y:ys) = eqx y || elemBy2 eqx ys
Calling elemBy2 (x ==) xs is now equivalent to elem x xs.
...Oh wait. That's just any. (And in fact, in the standard library, elem = any . (==).)

Related

Writing modules in Haskell the right way

(I'm totally rewriting this question to give it a better focus; you can see the history of changes if you want to see the original.)
Let's say I have two modules:
One module defines the function inverseAndSqrt. What this function actually does is not important; what is important is that it returns none, one, or both of two things in a way that the client can distinguish which one is which;
module Module1 (inverseAndSqrt) where
type TwoOpts a = (Maybe a, Maybe a)
inverseAndSqrt :: Int -> TwoOpts Float
inverseAndSqrt x = (if x /= 0 then Just (1.0/(fromIntegral x)) else Nothing,
if x >= 0 then Just (sqrt $ fromIntegral x) else Nothing)
another module defines other functions depending on inverseAndSqrt and on its type
module Module2 where
import Module1
fun :: (Maybe Float, Maybe Float) -> Float
fun (Just x, Just y) = x + y
fun (Just x, Nothing) = x
fun (Nothing, Just y) = y
exportedFun :: Int -> Float
exportedFun = fun . inverseAndSqrt
What I want to understand from the perspective of design principle is: how should I interface Module1 with other modules (e.g. Module2) in a way that makes it well encapsulated, reusable, etc?
The problems I see are
I could one day decide that I don't want to use a pair to return the two results anymore; I could decide to use a 2 elements list; or another type which is isomorphic (I think this is the right adjective, isn't it?) to a pair; if I do this, all client code will break
Exporting the TwoOpts type synonym doesn't solve anything, as Module1 could still change its implementation thus breaking client code.
Module1 is also forcing the type of the two optionals to be the same, but I'm not sure this is really relevant to this question...
How should I design Module1 (and thus edit Module2 as well) such that the two are not tightly coupled?
One thing I can think of is that maybe I should define a typeclass expressing what "a box with two optional things in it" is, and then Module1 and Module2 would use that as a common interface. But should that be in both module? In either of them? Or in none of them, in a third module? Or maybe such a class/concept is not needed?
I'm not a computer scientist so I'm sure that this question highlights some misunderstanding of mine due to lack of experience and theoretical background. Any help filling the gaps is welcome.
Possible modifications I'd like to support
Related to what chepner suggested in a comment to his answer, at some point I might want to extend the support from 2-tuple things to both 2- and 3-tuple things, having different accessor names for them, suche as get1of2/get2of2 (let's say these are the name we use when we first design Module1) vs get1of3/get2of3/get3of3.
At some point I would also be able to complement this 2-tuple-like type with something else, for instance an optional containing Just the sum¹ of the two main contents only if they are both Justs, or a Nothing if at least one of the two main contents is a Nothing. I guess in this case the internal representation of this class would be something like ((Maybe a, Maybe a), Maybe b) (¹ The sum is really a stupid example, so I've used b here instead of a to be more general than the sum would require).
To me, Haskell design is all type-centric. The design rule for functions is just "use the most general and accurate types that do the job", and the whole problem of design in Haskell is about coming up with the best types for the job.
We would like there to be no "junk" in the types, so that they have exactly one representation for each value you want to denote. E.g. String is a bad representation for numbers, because "0", "0.0", "-0" all mean the same thing, and also because "The Prisoner" is not a number -- it is a valid representation that does not have a valid denotation. If, say for performance reasons, the same denotation can be represented multiple ways, the type's API should make that difference invisible to the user.
So in your case, (Maybe a, Maybe a) is perfect -- it means exactly what you need it to mean. Using something more complicated is unnecessary, and will just complicate matters for the user. At some point whatever you expose will have to be convertible to a Maybe a for the first thing and a Maybe a for the second thing, and there is no extra information than that, so the tuple is perfect. Whether you use a type synonym or not is a matter of style -- I prefer not use synonyms at all and only give types names when I have a more formal abstraction in mind.
Connotation is important. For example, if I had a function for finding the roots of a quadratic polynomial, I probably wouldn't use TwoOpts, even though there are at most two of them. The fact that my return values are all "the same kind of thing" in an intuitive sense makes me prefer a list (or if I'm feeling particularly picky, a Set or Bag), even if the list has at most two elements. I just have it match my best understanding of the domain at the time, so I won't change it unless my understanding of the domain has changed in a significant way, in which case the opportunity to review all its uses is exactly what I want. If you are writing your functions to be as polymorphic as possible, then often you won't need to change anything but the specific moments the meaning is used, the exact moment domain knowledge is required (such as understanding the relationship between TwoOpts and Set). You don't need to "redo the plumbing" if it's made of a sufficiently flexible, polymorphic material.
Supposing you didn't have a clean isomorphism to a standard type like (Maybe a, Maybe a), and you wanted to formalize TwoOpts. The way here is to build an API out of its constructors, combinators, and eliminators. For example:
data TwoOpts a -- abstract, not exposed
-- constructors
none :: TwoOpts a
justLeft :: a -> TwoOpts a
justRight :: a -> TwoOpts a
both :: a -> a -> TwoOpts a
-- combinators
-- Semigroup and Monoid at least
swap :: TwoOpts a -> TwoOpts a
-- eliminators
getLeft :: TwoOpts a -> Maybe a
getRight :: TwoOpts a -> Maybe a
In this case the eliminators give exactly your representation (Maybe a, Maybe a) as their final coalgebra.
-- same as the tuple in a newtype, just more conventional
data TwoOpts a = TwoOpts (Maybe a) (Maybe a)
Or if you wanted to focus on the constructors side you could use an initial algebra
data TwoOpts a
= None
| JustLeft a
| JustRight a
| Both a a
You are at liberty to change this representation as long as it still implements the combinatory API above. If you have reason to use different representations of the same API, make the API into a typeclass (typeclass design is a whole other story).
In Einstein's famous words, "make it as simple as possible, but no simpler".
Don't define a simple type alias; this exposes the details of how you implement TwoOpts.
Instead, define a new type, but don't export the data constructor, but rather functions for accessing the two components. Then you are free to change the implementation of the type all you like without changing the interface, because the user can't pattern-match on a value of type TwoOpts a.
module Module1 (TwoOpts, inverseAndSqrt, getFirstOpt, getSecondOpt) where
data TwoOpts a = TwoOpts (Maybe a) (Maybe a)
getFirstOpt, getSecondOpt :: TwoOpts a -> Maybe a
getFirstOpt (TwoOpts a _) = a
getSecondOpt (TwoOpts _ b) = b
inverseAndSqrt :: Int -> TwoOpts Float
inverseAndSqrt x = TwoOpts (safeInverse x) (safeSqrt x)
where safeInverse 0 = Nothing
safeInverse x = Just (1.0 / fromIntegral x)
safeSqrt x | x >= 0 = Just $ sqrt $ fromIntegral x
| otherwise = Nothing
and
module Module2 where
import Module1
fun :: TwoOpts Float -> Float
fun a = case (getFirstOpts a, getSecondOpt a) of
(Just x, Just y) -> x + y
(Just x, Nothing) -> x
(Nothing, Just y) -> y
exportedFun :: Int -> Float
exportedFun = fun . inverseAndSqrt
Later, when you realize that you've reimplemented the type product, you can change your definitions without affecting any user code.
newtype TwoOpts a = TwoOpts { getOpts :: (Maybe a, Maybe a) }
getFirstOpt, getSecondOpt :: TwoOpts a -> Maybe a
getFirstOpt = fst . getOpts
getSecondOpt = snd . getOpts

Using different Ordering for Sets

I was reading a Chapter 2 of Purely Functional Data Structures, which talks about unordered sets implemented as binary search trees. The code is written in ML, and ends up showing a signature ORDERED and a functor UnbalancedSet(Element: ORDERED): SET. Coming from more of a C++ background, this makes sense to me; custom comparison function objects form part of the type and can be passed in at construction time, and this seems fairly analogous to the ML functor way of doing things.
When it comes to Haskell, it seems the behavior depends only on the Ord instance, so if I wanted to have a set that had its order reversed, it seems like I'd have to use a newtype instance, e.g.
newtype ReverseInt = ReverseInt Int deriving (Eq, Show)
instance Ord ReverseInt where
compare (ReverseInt a) (ReverseInt b)
| a == b = EQ
| a < b = GT
| a > b = LT
which I could then use in a set:
let x = Set.fromList $ map ReverseInt [1..5]
Is there any better way of doing this sort of thing that doesn't resort to using newtype to create a different Ord instance?
No, this is really the way to go. Yes, having a newtype is sometimes annoying but you get some big benefits:
When you see a Set a and you know a, you immediately know what type of comparison it uses (sort of the same way that purity makes code more readable by not making you have to trace execution). You don't have to know where that Set a comes from.
For many cases, you can coerce your way through multiple newtypes at once. For example, I can turn xs = [1,2,3] :: Int into ys = [ReverseInt 1, ReverseInt 2, ReverseInt 3] :: [ReverseInt] just using ys = coerce xs :: [ReverseInt]. Unfortunately, that isn't the case for Set (and it shouldn't - you'd need the coercion function to be monotonic to not screw up the data structure invariants, and there is not yet a way to express that in the type system).
newtypes end up being more composable than you expect. For example, the ReverseInt type you made already exists in a form that generalizes to reversing any type with an Ord constraint: it is called Down. To be explicit, you could use Down Int instead of ReversedInt, and you get the instance you wrote out for free!
Of course, if you still feel very strongly about this, nothing is stopping you from writing your version of Set which has to have a field which is the comparison function it uses. Something like
data Set a = Set { comparisionKey :: a -> a -> Ordering
, ...
}
Then, every time you make a Set, you would have to pass in the comparison key.

Haskell function to cast as a type

If I want a version of reads that returns a list of (Int, String), the example I see is
f x = reads x :: [(Int,String)]
I'd like to know if there's a way to do this in point-free style (f = g . reads?), or if this is something you just don't/can't do in Haskell.
I haven't seen any examples of using a type as an argument, so it may not be doable.
I think what you're looking for is f = reads :: String -> [(Int, String)].
The idiomatic way to do what you're describing is
f :: String -> [(Int, String)]
f = reads
The benefit to doing it this way is if you have a polymorphic type the result is what you'd expect (because of the Dreaded Monomorphism Restriction).
There is currently no way, but I have a suggested language extension, SignatureSections, which will allow you to write f = (:: [(Int, String)]) . reads.
Yes, there is actually.
fixIS :: [(Int,String)] -> [(Int,String)]
fixIS = id
I usually have a couple of functions lying around for when I want to resolve polymorphis (i.e. when I want to fix the inhibition monoid of a Netwire wire to (), or if I want to fix a Num a to Int). Obviously there's no point in doing this if you only need that once. The reason you might wanna do it this way is that it occasionally flows better in function definitions. Depending on how smart your haskell compiler is it might be less efficient though (in theory, the id could be dropped in most situations... not sure if GHC actively looks for that if id is given another name though).

Is the type of this function well defined

I'm pretty new to Haskell and I have created a high-order function:
forAll f ls ls2 = all (`f` ls) ls2
I need to specify the type, but I have doubts with the type of the function f:
GHCi says it's:
forAll :: (a -> t -> Bool) -> t -> [a] -> Bool
But shouldn't it be something like this?
forAll :: (a -> t) -> t -> [a] -> Bool
Thanks.
No, since all has the type
all :: (a -> Bool) -> [a] -> Bool
f has to return Bool. Since
(`f` ls)
(\a -> a `f` ls)
flip f ls
f must take an element of the list, ls, and produce a Bool. Making it's type
f :: a -> t -> Bool
Where ls :: t and ls2 :: [a].
Let's examine the type you suspect this function must take.
The type (a -> t) means that given some a we can produce a t. We have some as in our list of as, [a] and so we can presumably make a bunch of ts with a type like [t]. Further, we have yet another t passed in which we can stick in that other bunch of [t]s as well.
Now, I call these as and ts because we really don't know anything about what their actual types are. That said, we do know what our goal is: we must produce a Bool.
So somewhere inside our function must be a method of converting a bunch of ts, like [t], into a Bool. We could do this with something like length ts > 3 but I doubt that's what you're looking for.
The function type that GHC provides you looks a bit different. It states that we have a way of taking an a and a t together to a Bool (the type is (a -> t -> Bool)). Since we have a list of as we can feed each one of them one after another into this function so long as we have a source of ts. Since we have exactly one t coming in, we'll need to use it each time. Altogether that gives us a bunch of Bools, a [Bool] even. This is exactly the kind of thing we're looking for, though, as we'd like to condense that list of [Bool] to a single Bool using all.
This kind of narrative of types I've laid out—where we talk about functions having and wanting values, like a game of give and take between you and your program—is a pretty common method of reasoning about the types of your programs. You can often get quite far with this kind of exploration and provide yourself a lot of justification for the types of programs you've constructed.
Ultimately, GHC is always going to be "right" about the type of the particular values you ask it about—that's the advantage of an Hindley Milner type system. Try to check the types of functions that GHC infers often and see whether GHC has deduced some detail of the type narrative that you've missed.
(By the way, that narrative I mention is called, perhaps obviously, "game semantics of programs" and it also shows up in proofs and logic. There's a much deeper tie there if you decide to follow it.)

What are the benefits of currying?

I don't think I quite understand currying, since I'm unable to see any massive benefit it could provide. Perhaps someone could enlighten me with an example demonstrating why it is so useful. Does it truly have benefits and applications, or is it just an over-appreciated concept?
(There is a slight difference between currying and partial application, although they're closely related; since they're often mixed together, I'll deal with both terms.)
The place where I realized the benefits first was when I saw sliced operators:
incElems = map (+1)
--non-curried equivalent: incElems = (\elems -> map (\i -> (+) 1 i) elems)
IMO, this is totally easy to read. Now, if the type of (+) was (Int,Int) -> Int *, which is the uncurried version, it would (counter-intuitively) result in an error -- but curryied, it works as expected, and has type [Int] -> [Int].
You mentioned C# lambdas in a comment. In C#, you could have written incElems like so, given a function plus:
var incElems = xs => xs.Select(x => plus(1,x))
If you're used to point-free style, you'll see that the x here is redundant. Logically, that code could be reduced to
var incElems = xs => xs.Select(curry(plus)(1))
which is awful due to the lack of automatic partial application with C# lambdas. And that's the crucial point to decide where currying is actually useful: mostly when it happens implicitly. For me, map (+1) is the easiest to read, then comes .Select(x => plus(1,x)), and the version with curry should probably be avoided, if there is no really good reason.
Now, if readable, the benefits sum up to shorter, more readable and less cluttered code -- unless there is some abuse of point-free style done is with it (I do love (.).(.), but it is... special)
Also, lambda calculus would get impossible without using curried functions, since it has only one-valued (but therefor higher-order) functions.
* Of course it actually in Num, but it's more readable like this for the moment.
Update: how currying actually works.
Look at the type of plus in C#:
int plus(int a, int b) {..}
You have to give it a tuple of values -- not in C# terms, but mathematically spoken; you can't just leave out the second value. In haskell terms, that's
plus :: (Int,Int) -> Int,
which could be used like
incElem = map (\x -> plus (1, x)) -- equal to .Select (x => plus (1, x))
That's way too much characters to type. Suppose you'd want to do this more often in the future. Here's a little helper:
curry f = \x -> (\y -> f (x,y))
plus' = curry plus
which gives
incElem = map (plus' 1)
Let's apply this to a concrete value.
incElem [1]
= (map (plus' 1)) [1]
= [plus' 1 1]
= [(curry plus) 1 1]
= [(\x -> (\y -> plus (x,y))) 1 1]
= [plus (1,1)]
= [2]
Here you can see curry at work. It turns a standard haskell style function application (plus' 1 1) into a call to a "tupled" function -- or, viewed at a higher level, transforms the "tupled" into the "untupled" version.
Fortunately, most of the time, you don't have to worry about this, as there is automatic partial application.
It's not the best thing since sliced bread, but if you're using lambdas anyway, it's easier to use higher-order functions without using lambda syntax. Compare:
map (max 4) [0,6,9,3] --[4,6,9,4]
map (\i -> max 4 i) [0,6,9,3] --[4,6,9,4]
These kinds of constructs come up often enough when you're using functional programming, that it's a nice shortcut to have and lets you think about the problem from a slightly higher level--you're mapping against the "max 4" function, not some random function that happens to be defined as (\i -> max 4 i). It lets you start to think in higher levels of indirection more easily:
let numOr4 = map $ max 4
let numOr4' = (\xs -> map (\i -> max 4 i) xs)
numOr4 [0,6,9,3] --ends up being [4,6,9,4] either way;
--which do you think is easier to understand?
That said, it's not a panacea; sometimes your function's parameters will be the wrong order for what you're trying to do with currying, so you'll have to resort to a lambda anyway. However, once you get used to this style, you start to learn how to design your functions to work well with it, and once those neurons starts to connect inside your brain, previously complicated constructs can start to seem obvious in comparison.
One benefit of currying is that it allows partial application of functions without the need of any special syntax/operator. A simple example:
mapLength = map length
mapLength ["ab", "cde", "f"]
>>> [2, 3, 1]
mapLength ["x", "yz", "www"]
>>> [1, 2, 3]
map :: (a -> b) -> [a] -> [b]
length :: [a] -> Int
mapLength :: [[a]] -> [Int]
The map function can be considered to have type (a -> b) -> ([a] -> [b]) because of currying, so when length is applied as its first argument, it yields the function mapLength of type [[a]] -> [Int].
Currying has the convenience features mentioned in other answers, but it also often serves to simplify reasoning about the language or to implement some code much easier than it could be otherwise. For example, currying means that any function at all has a type that's compatible with a ->b. If you write some code whose type involves a -> b, that code can be made work with any function at all, no matter how many arguments it takes.
The best known example of this is the Applicative class:
class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b
And an example use:
-- All possible products of numbers taken from [1..5] and [1..10]
example = pure (*) <*> [1..5] <*> [1..10]
In this context, pure and <*> adapt any function of type a -> b to work with lists of type [a]. Because of partial application, this means you can also adapt functions of type a -> b -> c to work with [a] and [b], or a -> b -> c -> d with [a], [b] and [c], and so on.
The reason this works is because a -> b -> c is the same thing as a -> (b -> c):
(+) :: Num a => a -> a -> a
pure (+) :: (Applicative f, Num a) => f (a -> a -> a)
[1..5], [1..10] :: Num a => [a]
pure (+) <*> [1..5] :: Num a => [a -> a]
pure (+) <*> [1..5] <*> [1..10] :: Num a => [a]
Another, different use of currying is that Haskell allows you to partially apply type constructors. E.g., if you have this type:
data Foo a b = Foo a b
...it actually makes sense to write Foo a in many contexts, for example:
instance Functor (Foo a) where
fmap f (Foo a b) = Foo a (f b)
I.e., Foo is a two-parameter type constructor with kind * -> * -> *; Foo a, the partial application of Foo to just one type, is a type constructor with kind * -> *. Functor is a type class that can only be instantiated for type constrcutors of kind * -> *. Since Foo a is of this kind, you can make a Functor instance for it.
The "no-currying" form of partial application works like this:
We have a function f : (A ✕ B) → C
We'd like to apply it partially to some a : A
To do this, we build a closure out of a and f (we don't evaluate f at all, for the time being)
Then some time later, we receive the second argument b : B
Now that we have both the A and B argument, we can evaluate f in its original form...
So we recall a from the closure, and evaluate f(a,b).
A bit complicated, isn't it?
When f is curried in the first place, it's rather simpler:
We have a function f : A → B → C
We'd like to apply it partially to some a : A – which we can just do: f a
Then some time later, we receive the second argument b : B
We apply the already evaluated f a to b.
So far so nice, but more important than being simple, this also gives us extra possibilities for implementing our function: we may be able to do some calculations as soon as the a argument is received, and these calculations won't need to be done later, even if the function is evaluated with multiple different b arguments!
To give an example, consider this audio filter, an infinite impulse response filter. It works like this: for each audio sample, you feed an "accumulator function" (f) with some state parameter (in this case, a simple number, 0 at the beginning) and the audio sample. The function then does some magic, and spits out the new internal state1 and the output sample.
Now here's the crucial bit – what kind of magic the function does depends on the coefficient2 λ, which is not quite a constant: it depends both on what cutoff frequency we'd like the filter to have (this governs "how the filter will sound") and on what sample rate we're processing in. Unfortunately, the calculation of λ is a bit more complicated (lp1stCoeff $ 2*pi * (νᵥ ~*% δs) than the rest of the magic, so we wouldn't like having to do this for every single sample, all over again. Quite annoying, because νᵥ and δs are almost constant: they change very seldom, certainly not at each audio sample.
But currying saves the day! We simply calculate λ as soon as we have the necessary parameters. Then, at each of the many many audio samples to come, we only need to perform the remaining, very easy magic: yⱼ = yⱼ₁ + λ ⋅ (xⱼ - yⱼ₁). So we're being efficient, and still keeping a nice safe referentially transparent purely-functional interface.
1 Note that this kind of state-passing can generally be done more nicely with the State or ST monad, that's just not particularly beneficial in this example
2 Yes, this is a lambda symbol. I hope I'm not confusing anybody – fortunately, in Haskell it's clear that lambda functions are written with \, not with λ.
It's somewhat dubious to ask what the benefits of currying are without specifying the context in which you're asking the question:
In some cases, like functional languages, currying will merely be seen as something that has a more local change, where you could replace things with explicit tupled domains. However, this isn't to say that currying is useless in these languages. In some sense, programming with curried functions make you "feel" like you're programming in a more functional style, because you more typically face situations where you're dealing with higher order functions. Certainly, most of the time, you will "fill in" all of the arguments to a function, but in the cases where you want to use the function in its partially applied form, this is a bit simpler to do in curried form. We typically tell our beginning programmers to use this when learning a functional language just because it feels like better style and reminds them they're programming in more than just C. Having things like curry and uncurry also help for certain conveniences within functional programming languages too, I can think of arrows within Haskell as a specific example of where you would use curry and uncurry a bit to apply things to different pieces of an arrow, etc...
In some cases, you want to think about more than functional programs, you can present currying / uncurrying as a way to state the elimination and introduction rules for and in constructive logic, which provides a connection to a more elegant motivation for why it exists.
In some cases, for example, in Coq, using curried functions versus tupled functions can produce different induction schemes, which may be easier or harder to work with, depending on your applications.
I used to think that currying was simple syntax sugar that saves you a bit of typing. For example, instead of writing
(\ x -> x + 1)
I can merely write
(+1)
The latter is instantly more readable, and less typing to boot.
So if it's just a convenient short cut, why all the fuss?
Well, it turns out that because function types are curried, you can write code which is polymorphic in the number of arguments a function has.
For example, the QuickCheck framework lets you test functions by feeding them randomly-generated test data. It works on any function who's input type can be auto-generated. But, because of currying, the authors were able to rig it so this works with any number of arguments. Were functions not curried, there would be a different testing function for each number of arguments - and that would just be tedious.

Resources