Is there a pattern for concurrent searching? - multithreading

I have this concurrent pattern that came up when trying to model my problem, and I don't know if there's a name for it. Having a design pattern reference or something like that could help me implement it more safely.
Concept:
The foreman (main thread) is asked to look for a series of objects in a big warehouse.
This warehouse has n floors. The foreman has a team of n workers (helper threads), each with a dedicated floor.
The foreman recieves an object, and asks every worker to find it.
If a worker finds it on their floor, they return to the foreman with appropriate information. (location, status...)
The foreman then calls back all other workers (since the item has been found there's no need for more searching), and move on to the next object.
If everyone comes back saying "No it's not on my floor" we can act accordingly. (signal a missing product to management...)
The main problem I have is that I need to make sure threads don't waste calculation time when the item has already been found, and to ensure proper coordination.
I also can't give every thread the entire list of things to find, since this information is recieved item by item. (eg. via network)

Are you looking for Observer pattern ?
Once a worker finds the item and returns to the Foreman. The Foreman should notify to all the workers that the item is found, so all the threads will stop search and return.

Related

Handling large amounts of arbitrarily scheduled tasks in node

Premise: I have a calendar-like system that allows the creation/deletion of 'events' at a scheduled time in the future. The end goal is to perform an action (send message/reminder) prior to & at the start of the event. I've done a bit of searching & have narrowed down to what seems to be my two most viable choices
Unix Cron Jobs
Bree
I'm not quite sure which will best suit my end goal though, and additionally, it feels like there must be some additional established ways to do things like this that I just don't have proper knowledge of, or that I'm entirely skipping over.
My questions:
If, theoretically, the system were to be handling an arbitrarily large amount of 'events', all for arbitrary times in the future, which of these options is more practical system-resource-wise? Is my concern in this regard even valid?
Is there any foreseeable problem with filling up a crontab with a large volume of jobs - or, in bree's case, scheduling a large amount of jobs?
Is there a better idea I've just completely missed so far?
This mainly stems from bree's use of node 'worker threads'. I'm very unfamiliar with this concept
and concerned that since a 'worker thread' is spawned per every job, I could very quickly tie up all of my available threads and grind... something, to a halt. This, however, sounds somewhat silly & possibly wrong(possibly indicative of my complete lack of knowledge here), & thus, my question.
Thanks, Stark.
For a calendar-like system, it seems you could query your database to find all events occuring in the next hour, then create a setTimeout() for each one of those. Then, an hour later, do the same thing again. Then, upon any server restart, do the same thing again. You don't really need to worry about events that aren't imminent. They can just sit in the database until shortly before their time. You will just need an efficient way to query the database to find events that are imminent and user a timer for them.
WorkerThreads are fairly heavy weight items in nodejs as they create a whole separate heap and a whole new instance of a V8 interpreter. You would definitely not want a separate WorkerThread for each event.
I should add that timers in nodejs are very lightweight items and it is not problem to have lots of them. They are just stored in a sorted linked list and only the insertion of a new timer takes a little bit more time (to do an insertion sort as it is added to the list) as the list gets longer. There is no continuous run-time overhead because there are lots of timers. The event loop, then just checks the first item in the linked list to see if it's time yet for the next timer to fire. If so, it removes it from the head of the list and calls its callback. If not, it goes about the rest of the event loop work items and will check the first item in the list again the next through the event loop.

Conceptual approach of threads in Delphi

Over 2 years ago, Remy Lebeau gave me invaluable tips on threads in Delphi. His answers were very useful to me and I feel like I made great progress thanks to him. This post can be found here.
Today, I now face a "conceptual problem" about threads. This is not really about code, this is about the approach one should choose for a certain problem. I know we are not supposed to ask for personal opinions, I am merely asking if, on a technical point a view, one of these approach must be avoided or if they are both viable.
My application has a list of unique product numbers (named SKU) in a database. Querying an API with theses SKUS, I get back a JSON file containing details about these products. This JSON file is processed and results are displayed on screen, and saved in database. So, at one step, a download process is involved and it is executed in a worker thread.
I see two different approaches possible for this whole procedure :
When the user clicks on the start button, a query is fired, building a list of SKUs based on the user criteria. A Tstringlist is then built and, for each element of the list, a thread is launched, downloads the JSON, sends back the result to the main thread and terminates.
This can be pictured like this :
When the user clicks on the start button, a query is fired, building a list of SKUs based on the user criteria. Instead of sending SKU numbers one after another to the worker thread, the whole list is sent, and the worker thread iterates through the list, sending back results for displaying and saving to the main thread (via a synchronize event). So we only have one worker thread working the whole list before terminating.
This can be pictured like this :
I have coded these two different approaches and they both work... with each their downsides that I have experienced.
I am not a professional developer, this is a hobby and, before working my way further down a path or another for "polishing", I would like to know if, on a technical point of view and according to your knowledge and experience, one of the approaches I depicted should be avoided and why.
Thanks for your time
Mathias
Another thing to consider in this case is latency to your API that is producing the JSON. For example, if it takes 30 msec to go back and forth to the server, and 0.01 msec to create the JSON on the server, then querying a single JSON record per request, even if each request is in a different thread, does not make much sense. In that case, it would make sense to do fewer requests to the server, returning more data on each request, and partition the results up among different threads.
The other thing is that threads are not a solution to every problem. I would question why you need to break each sku into a single thread. how long is each individual thread running and how much processing is each thread doing? In general, creating lots of threads, for each thread to work for a fraction of a msec does not make sense. You want the threads to be alive for as long as possible, processing as much data as they can for the job. You don't want the computer to be using as much time creating/destroying threads as actually doing useful work.

EventSourcing race condition

Here is the nice article which describes what is ES and how to deal with it.
Everything is fine there, but one image is bothering me. Here it is
I understand that in distributed event-based systems we are able to achieve eventual consistency only. Anyway ... How do we ensure that we don't book more seats than available? This is especially a problem if there are many concurrent requests.
It may happen that n aggregates are populated with the same amount of reserved seats, and all of these aggregate instances allow reservations.
I understand that in distributes event-based systems we are able to achieve eventual consistency only, anyway ... How to do not allow to book more seats than we have? Especially in terms of many concurrent requests?
All events are private to the command running them until the book of record acknowledges a successful write. So we don't share the events at all, and we don't report back to the caller, without knowing that our version of "what happened next" was accepted by the book of record.
The write of events is analogous to a compare-and-swap of the tail pointer in the aggregate history. If another command has changed the tail pointer while we were running, our swap fails, and we have to mitigate/retry/fail.
In practice, this is usually implemented by having the write command to the book of record include an expected position for the write. (Example: ES-ExpectedVersion in GES).
The book of record is expected to reject the write if the expected position is in the wrong place. Think of the position as a unique key in a table in a RDBMS, and you have the right idea.
This means, effectively, that the writes to the event stream are actually consistent -- the book of record only permits the write if the position you write to is correct, which means that the position hasn't changed since the copy of the history you loaded was written.
It's typical for commands to read event streams directly from the book of record, rather than the eventually consistent read models.
It may happen that n-AggregateRoots will be populated with the same amount of reserved seats, it means having validation in the reserve method won't help, though. Then n-AggregateRoots will emit the event of successful reservation.
Every bit of state needs to be supervised by a single aggregate root. You can have n different copies of that root running, all competing to write to the same history, but the compare and swap operation will only permit one winner, which ensures that "the" aggregate has a single internally consistent history.
There are going to be a couple of ways to deal with such a scenario.
First off, an event stream would have the current version as the version of the last event added. This means that when you would not, or should not, be able to persist the event stream if the event stream is not at the version when loaded. Since the very first write would cause the version of the event stream to be increased, the second write would not be permitted. Since events are not emitted, per se, but rather a result of the event sourcing we would not have the type of race condition in your example.
Well, if your commands are processed behind a queue any failures should be retried. Should it not be possible to process the request you would enter the normal "I'm sorry, Dave. I'm afraid I can't do that" scenario by letting the user know that they should try something else.
Another option is to start the processing by issuing an update against some table row to serialize any calls to the aggregate. Probably not the most elegant but it does cause a system-wide block on the processing.
I guess, to a large extent, one cannot really trust the read store when it comes to transactional processing.
Hope that helps :)

Designing concurrency in a Python program

I'm designing a large-scale project, and I think I see a way I could drastically improve performance by taking advantage of multiple cores. However, I have zero experience with multiprocessing, and I'm a little concerned that my ideas might not be good ones.
Idea
The program is a video game that procedurally generates massive amounts of content. Since there's far too much to generate all at once, the program instead tries to generate what it needs as or slightly before it needs it, and expends a large amount of effort trying to predict what it will need in the near future and how near that future is. The entire program, therefore, is built around a task scheduler, which gets passed function objects with bits of metadata attached to help determine what order they should be processed in and calls them in that order.
Motivation
It seems to be like it ought to be easy to make these functions execute concurrently in their own processes. But looking at the documentation for the multiprocessing modules makes me reconsider- there doesn't seem to be any simple way to share large data structures between threads. I can't help but imagine this is intentional.
Questions
So I suppose the fundamental questions I need to know the answers to are thus:
Is there any practical way to allow multiple threads to access the same list/dict/etc... for both reading and writing at the same time? Can I just launch multiple instances of my star generator, give it access to the dict that holds all the stars, and have new objects appear to just pop into existence in the dict from the perspective of other threads (that is, I wouldn't have to explicitly grab the star from the process that made it; I'd just pull it out of the dict as if the main thread had put it there itself).
If not, is there any practical way to allow multiple threads to read the same data structure at the same time, but feed their resultant data back to a main thread to be rolled into that same data structure safely?
Would this design work even if I ensured that no two concurrent functions tried to access the same data structure at the same time, either for reading or for writing?
Can data structures be inherently shared between processes at all, or do I always explicitly have to send data from one process to another as I would with processes communicating over a TCP stream? I know there are objects that abstract away that sort of thing, but I'm asking if it can be done away with entirely; have the object each thread is looking at actually be the same block of memory.
How flexible are the objects that the modules provide to abstract away the communication between processes? Can I use them as a drop-in replacement for data structures used in existing code and not notice any differences? If I do such a thing, would it cause an unmanageable amount of overhead?
Sorry for my naivete, but I don't have a formal computer science education (at least, not yet) and I've never worked with concurrent systems before. Is the idea I'm trying to implement here even remotely practical, or would any solution that allows me to transparently execute arbitrary functions concurrently cause so much overhead that I'd be better off doing everything in one thread?
Example
For maximum clarity, here's an example of how I imagine the system would work:
The UI module has been instructed by the player to move the view over to a certain area of space. It informs the content management module of this, and asks it to make sure that all of the stars the player can currently click on are fully generated and ready to be clicked on.
The content management module checks and sees that a couple of the stars the UI is saying the player could potentially try to interact with have not, in fact, had the details that would show upon click generated yet. It produces a number of Task objects containing the methods of those stars that, when called, will generate the necessary data. It also adds some metadata to these task objects, assuming (possibly based on further information collected from the UI module) that it will be 0.1 seconds before the player tries to click anything, and that stars whose icons are closest to the cursor have the greatest chance of being clicked on and should therefore be requested for a time slightly sooner than the stars further from the cursor. It then adds these objects to the scheduler queue.
The scheduler quickly sorts its queue by how soon each task needs to be done, then pops the first task object off the queue, makes a new process from the function it contains, and then thinks no more about that process, instead just popping another task off the queue and stuffing it into a process too, then the next one, then the next one...
Meanwhile, the new process executes, stores the data it generates on the star object it is a method of, and terminates when it gets to the return statement.
The UI then registers that the player has indeed clicked on a star now, and looks up the data it needs to display on the star object whose representative sprite has been clicked. If the data is there, it displays it; if it isn't, the UI displays a message asking the player to wait and continues repeatedly trying to access the necessary attributes of the star object until it succeeds.
Even though your problem seems very complicated, there is a very easy solution. You can hide away all the complicated stuff of sharing you objects across processes using a proxy.
The basic idea is that you create some manager that manages all your objects that should be shared across processes. This manager then creates its own process where it waits that some other process instructs it to change the object. But enough said. It looks like this:
import multiprocessing as m
manager = m.Manager()
starsdict = manager.dict()
process = Process(target=yourfunction, args=(starsdict,))
process.run()
The object stored in starsdict is not the real dict. instead it sends all changes and requests, you do with it, to its manager. This is called a "proxy", it has almost exactly the same API as the object it mimics. These proxies are pickleable, so you can pass as arguments to functions in new processes (like shown above) or send them through queues.
You can read more about this in the documentation.
I don't know how proxies react if two processes are accessing them simultaneously. Since they're made for parallelism I guess they should be safe, even though I heard they're not. It would be best if you test this yourself or look for it in the documentation.

How to use node.js for a queue processing app

What are the best practices when using node.js for a queue processing application?
My main concern there would be that Node processes can handle thousands of items at once, but that a rogue unhandled error in any of them could bring down the whole process.
I'd be looking for a queue/driver combination that allowed a two-phase commit (wrong terminology I think?), i.e:
Get the next appropriate item from the queue (which then blocks that item from being consumed elsewhere)
Once each item is handed over to the downstream service/database/filesystem you can then tell the queue that the item has been processed
I'd also want repeatably unique identifiers so that you can reliably detect if an item comes down the pipe twice. In a theoretical system it might not happen, but in a practical environment the capability to deal with it will make your life easier.
check out http://learnboost.github.com/kue/ i have used it for a couple of pet projects and works quite good, you can look at their source and check what practices they have take care of

Resources