My server receives a list base64 image eg [img1,img2....] at an endpoint.
I have function getPoses(img) that takes an image and returns an object back.
I want to be able to map the images to getPoses() and get the object back for each image in Parallel.
I have tried Async.each function but I notice it's not really Parallel. Probably because it runs in a single thread/core.
I have also tried to use cluster, so that I can utilize all the cores to run getPoses() in multiple cores. But I feel stuck because, It's not clear to me how the master can obtain the poses found by workers.
I would be super gratefully for any help from the community.
Aync code:
//END POINT
app.post('/postImage' ,async function(req,res){
const imgBase64List = req.body.imgBase64.split('next');
const imgBase64IndexList = []
imgBase64List.map((imgBase64,index)=>{
imgBase64IndexList.push([index,imgBase64])
})
async.each(imgBase64IndexList , getPoseDetection , function(err){
if(err){
console.log("Error occured when feteching one of the pose")
console.log(err)
}else{
console.log('Sending Poses!')
res.send(JSON.stringify(poseDetectionResults))
}
})
});//End of app.post and asyn function
const getPoseDetection = async (imgBase64Index, callback) => {
//console.log('start');
const img = new Image();
img.src = imgBase64Index[1];
const imgIndex = imgBase64Index[0]
const canvas = createCanvas(img.width, img.height);
const ctx = canvas.getContext('2d');
ctx.drawImage(img, 0, 0);
const input = tf.browser.fromPixels(canvas);
const imageScaleFactor = 0.3;
const flipHorizontal = false;
const outputStride = 8;
const poses = await net.estimateMultiplePoses(input, {
flipHorizontal: false,
maxDetections: 2,
minPoseConfidence: 0.15,
minPartConfidence:0.1,
nmsRadius:20,
});
boundingBoxes = [] //reset the boundingBoxese
poses.forEach(pose => {
var box = posenet.getBoundingBoxPoints(pose.keypoints);
boundingBoxes.push(box)
});
poseDetectionResults[imgIndex] = {detectionList:poses}
//console.log(poses)
}
Thank You
Related
I have a question that I can't figure out,I do not know where to begin.I use the following technologies: React Native (mobile application) and the backend application is built with Node Js.
What I'm trying to do is, the user takes a picture of a product, with the help of this mobile application the caption is saved in a directory on the server, let's say [image_phone],I managed to do this part,on the server I also have a directory [app_images] where I have images of products with a specific name.
What I want to do is create a function that will return from the folder [app_images] all the images similar to the one uploaded by the user in the folder [image_phone].
What did I try to do about it:
Following a tutorial on the Internet, I tried to solve this problem using the following modules.[jimp, pixelmatch, pngjs]
Code:
const Jimp = require('jimp');
const PNG = require('pngjs').PNG;
const pixelmatch = require('pixelmatch');
exports.compareImage = catchAsync(async(req,res,next)=>{
const originalFile = imageRoot+'/imagine3.png';
const compareFile = compareRoot+'/Screenshot_72.png';
const createBufferImage = async (url) => {
return new Promise(async (resolve, reject) => {
await Jimp.read(url, async (err, image) => {
if (err) {
console.log(`eroare la citirea imagini Jimp: ${err}`);
reject(err);
}
image.resize(400, 400);
return image.getBuffer(jimp.MIME_PNG, (err, buffer) => {
if (err) {
console.log(`eroare convertire url in buffer: ${err}`);
reject(err);
}
resolve(buffer);
});
});
});
};
const compareImageApp = async (
capture,
app_image
) => {
try {
console.log('> Start compare');
const img1Buffer = await createBufferImage(capture);
const img2Buffer = await createBufferImage(app_image);
const img1 = PNG.sync.read(img1Buffer);
const img2 = PNG.sync.read(img2Buffer);
const { width, height } = img1;
const diff = new PNG({ width, height });
const difference = pixelmatch(
img1.data,
img2.data,
diff.data,
width,
height,
{
threshold: 0,
}
);
const compatibility = 100 - (difference * 100) / (width * height);
console.log(`${difference} diferenta pixel`);
console.log(`Compatibilitate: ${compatibility}%`);
console.log('< Misiune completa');
return compatibility;
} catch (error) {
console.log(`Eroare la compararea imaginilor: ${error}`);
throw error;
}
};
compareImageApp(originalFile,
compareFile
)
res.status(200).json({
status:'succes'
})
})
Result:
But the accuracy does not really exist, there are images that do not resemble each other at all, but it gives me an accuracy of over 50%.
2)I tried to solve this problem using another module https://www.npmjs.com/package/rembrandt but the same accuracy problem does not exist.
Now I'm trying to solve this problem using tensorFlow js, to make a kind of image recognition app, something like facial recognition.
Do you have any ideas on how to solve this problem, if you have faced it before.
I am trying to upload to s3 with bulk files.
Somehow if I am uploading with callback, it'll work properly but I want to push all the return data into an array then do something after. But it doesn't work.
I looked online, I was saw answers such as using async await or recurssive would work but still it's not working though. I even tried using reduce but no luck too
example of my reduce
return files.reduce((accumulator, current) => {
const {path, buffer} = current;
const s3 = new AWS.S3();
// https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putObject-property
s3.putObject(awsS3sdkParams(path, buffer), function ( err, data ) {
const { protocol, host } = this.request.httpRequest.endpoint;
data.params = this.request.params;
data.params.url = `${protocol}//${host}/${data.params.Key}`;
return [...accumulator, data];
});
}, []);
example using recurrsive
const result = [];
const helper = (files) => {
const {path, buffer} = files[0];
const s3 = new AWS.S3();
// https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putObject-property
s3.putObject(UploadService.awsS3sdkParams(path, buffer), function (err, data){
const { protocol, host } = this.request.httpRequest.endpoint;
data.params = this.request.params;
data.params.url = `${protocol}//${host}/${data.params.Key}`;
UtilsService.clDebug(data, 'data');
result.push(data);
files.shift();
if(files.length > 0) return helper(files);
});
};
helper(files);
return results;
example using promise
const result = [];
for(let {path, buffer} of files){
const s3 = new AWS.S3();
s3.putObject(awsS3sdkParams(path, buffer)).promise()
.then(file => {
result.push(file);
})
.catch(err => {
console.log(err, 'errs');
});
}
I can pretty much understand why result is always [] but how can I make it work though?
Reason why I cannot use async await is because I tried but then somehow after files are either uploaded with bad data that I cannot even open the file, or keys would be the same...
Does anyone has any other suggestions or advice?
Thanks in advance for any
I am developing an face detection application,for that I need to collect the users image for reference to detect them later.i have successfully uploaded the image in MySQL databse.now I need upload the image in public folder in react to detect the image in camera.i stuck in uploading image in react public folder.help me out get rid of this problem..
This is the React code where image to be detected in the imgUrl variable
detect = async () => {
const videoTag = document.getElementById("videoTag");
const canvas = document.getElementById("myCanvas");
const displaySize = { width: videoTag.width, height: videoTag.height };
faceapi.matchDimensions(canvas, displaySize);
//setInterval starts here for continuous detection
time = setInterval(async () => {
let fullFaceDescriptions = await faceapi
.detectAllFaces(videoTag)
.withFaceLandmarks()
.withFaceExpressions()
.withFaceDescriptors();
const value = fullFaceDescriptions.length;
this.setState({ detection: value });
fullFaceDescriptions = faceapi.resizeResults(
fullFaceDescriptions,
displaySize
);
canvas.getContext("2d").clearRect(0, 0, canvas.width, canvas.height);
//Label Images
var dummy = ["praveen", "vikranth", "Gokul", "Rahul"];
const labels = nameArray1;
// const labels = ["praveen", "vikranth", "Gokul", "Rahul"];
if (no_of_times <= 0) {
if (no_of_times === 0) {
labeledFaceDescriptors = await Promise.all(
labels.map(async (label) => {
// fetch image data from urls and convert blob to HTMLImage element
const imgUrl = `/img/${label}.png`; // for testing purpose
// const imgUrl = testImage;
const img = await faceapi.fetchImage(imgUrl);
const fullFaceDescription = await faceapi
.detectSingleFace(img)
.withFaceLandmarks()
.withFaceExpressions()
.withFaceDescriptor();
if (!fullFaceDescription) {
throw new Error(`no faces detected for ${label}`);
}
const faceDescriptors = [fullFaceDescription.descriptor];
return new faceapi.LabeledFaceDescriptors(label, faceDescriptors);
})
);
// console.log(no_of_times);
}
}
const maxDescriptorDistance = 0.7;
no_of_times++;
const faceMatcher = new faceapi.FaceMatcher(
labeledFaceDescriptors,
maxDescriptorDistance
);
const results = fullFaceDescriptions.map((fd) =>
faceMatcher.findBestMatch(fd.descriptor)
);
result = [];
results.forEach((bestMatch, i) => {
const box = fullFaceDescriptions[i].detection.box;
// console.log(box)
const text = bestMatch.toString(); //this for basMatch name detection
var str = "";
//This is for removing names confidence to map value without duplicate
var val = text.replace(/[0-9]/g, "");
for (let i of val) {
if (i !== " ") {
str += i;
} else {
break;
}
}
if (result.includes(str) === false) result.push(str);
const drawBox = new faceapi.draw.DrawBox(box, { label: text });
drawBox.draw(canvas);
faceapi.draw.drawFaceExpressions(canvas, fullFaceDescriptions, 0.85);
});
for (let i = 0; i < fullFaceDescriptions.length; i++) {
const result1 = fullFaceDescriptions[i].expressions.asSortedArray()[i];
// console.log(result[i]);
// console.log(result1.expression);
this.test(result[i], result1.expression);
}
}, 100);
In the above code i am manually putting image in public folder,this need to be done dynamically when the user uploads image.
this is place i get the images in base64 from nodejs
axios.get("/image").then((res) => {
testImage = res.data;
// console.log("from image" + res.data);
imgback = <img src={`data:image/jpeg;base64,${res.data}`} />;
});
This is nodejs code for the get request from reactjs
app.get("/image", (req, res) => {
connection.query("SELECT * FROM images", (error, row, fields) => {
if (!!error) {
console.log("Error in the query");
} else {
console.log("successful query");
var buffer = new Buffer(row[0].image, "binary");
var bufferBase64 = buffer.toString("base64");
res.send(bufferBase64);
}
});
});
my goal is, in the imgUrl variable in react code i need to specify the image folder for that i need to dynamically add image in folder.
Or is there is any other way to directly give image array in the imgUrl variable.please help me to sort out this problem.
I have a cloud function. It is triggered by an App Engine Cron job. It triggers my Firebase Cloud Function every hour with a Google Cloud Pub/Sub. I fetch my Firebase Realtime Database once, and loop for every value. The problem is my main.async function called multiple times. I use an i variable for loop and my console logs more i count than my database length. I mean that if my database length is 4, but for loop runs 8 or 15 or 23 times. This values change randomly. I want to loop for my each database value,fetch some data on internet,and when it is done, go for next value. Here is the code:
use strict';
const functions = require('firebase-functions');
const admin = require('firebase-admin');
admin.initializeApp(functions.config().firebase);
var request = require('request-promise').defaults({ encoding: null });
var fs = require('fs');
// Get a reference to the Cloud Vision API component
const Vision = require('#google-cloud/vision');
const vision = new Vision.ImageAnnotatorClient();
var os = require("os");
var databaseArray = [];
var uniqueFilename = require('unique-filename')
exports.hourly_job = functions.pubsub
.topic('hourly-job')
.onPublish((event) => {
console.log("Hourly Job");
var db = admin.database();
var ref = db.ref("myData")
ref.once("value").then(function(allData) {
allData.forEach(function(deviceToken) {
deviceToken.forEach(function(firebaseIDs) {
var deviceTokenVar = deviceToken.key;
var firebaseIDVar = firebaseIDs.key;
var firstvalue = firebaseIDs.child("firstvalue").val();
var secondvalue = firebaseIDs.child("secondvalue").val();
var items = [deviceTokenVar, firebaseIDVar, firstvalue, secondvalue];
databaseArray.push(items);
});
});
return databaseArray;
}).then(function (databasem) {
main().catch(console.error);
});
return true;
});
const main = async () => {
var i;
for (i = 0; i < databaseArray.length; i++) {
console.log("Database Arrays " + i + ". elements: ");
if (databaseArrayfirst != "") {
var apiUrl = "http://api.blabla;
try {
const apiBody = await request.get(apiUrl);
///////////////////////////vison start//////////////////////
const visionResponseBody = await vision.documentTextDetection(apiBody)
var visionResponse = visionResponseBody[0].textAnnotations[0].description;
...some logic here about response...
/////////////////////////////////////////////////
var getdatabasevar = await admin.database().ref("myData/" + databaseArrayDeviceToken + "/" + databaseArrayFirebaseID);
await getdatabasevar.update({
"firstvalue": visionResponse
});
/////////////////////////////////////////////////
} catch (error) {
console.error(error);
}
///////////////////////////vison end//////////////////////
}
};
return true;
};
Thank you.
Hi i am new to google vision apis. I want to detect the faces on the Image ,i am using the node.js. the local image containing more than 10 faces. but vision api returning only 10 faces Detection. Is there any way to detect all the faces using this Vision api. please refer vision node api.
and you can take this image as ref
Here is my code
function findFaceontheImage(req, res, next) {
var vision = Vision();
var inputfile = 'NASA_Astronaut_Group_15.jpg';
var outputFile = 'out.png';
vision.faceDetection({source: {filename: inputfile}})
.then(function (results) {
const faces = results[0].faceAnnotations;
console.log('Faces:');
req.body['faces']=results;
var numFaces = faces.length;
console.log('Found ' + numFaces + (numFaces === 1 ? ' face' : ' faces'));
highlightFaces(inputfile, faces, outputFile, Canvas, function (err) {
if (err) {
next()
}
console.log("Finished!");
next()
});
})
.catch(function (err) {
console.error('ERROR:', err);
});
}
function highlightFaces(inputFile, faces, outputFile, Canvas, callback) {
fs.readFile(inputFile, function (err, image) {
if (err) {
return callback(err);
}
var Image = Canvas.Image;
// Open the original image into a canvas
var img = new Image();
img.src = image;
var canvas = new Canvas(img.width, img.height);
var context = canvas.getContext("2d");
context.drawImage(img, 0, 0, img.width, img.height);
// Now draw boxes around all the faces
context.strokeStyle = "rgba(0,255,0,0.8)";
context.lineWidth = "5";
faces.forEach(function (face) {
context.beginPath();
var origX = 0;
var origY = 0;
face.boundingPoly.vertices.forEach(function (bounds, i) {
if (i === 0) {
origX = bounds.x;
origY = bounds.y;
}
context.lineTo(bounds.x, bounds.y);
});
context.lineTo(origX, origY);
context.stroke();
});
// Write the result to a file
console.log("Writing to file " + outputFile);
var writeStream = fs.createWriteStream(outputFile);
var pngStream = canvas.pngStream();
pngStream.on("data", function (chunk) {
writeStream.write(chunk);
});
pngStream.on("error", console.log);
pngStream.on("end", callback);
});
}
In case there're other people who's still struggling on this topic.
With the Node.js Client Library, you can pass the ImprovedRequest object to the client.faceDetection(..) method instead of using the filepath or imageuri.
For example, in my case, I want the api to process an image in my GCS. So, instead of placing the imageuri as string. I'd do something like below.
import { protos } from '#google-cloud/vision';
// BEFORE
const [result] = await CLIENT.faceDetection(`gs://${bucketName}/${filePath}`);
// AFTER
const [result] = await CLIENT.faceDetection({
image: {
source: { imageUri: `gs://${bucketName}/${filePath}` }
},
features: [
{
maxResults: 100,
type: protos.google.cloud.vision.v1.Feature.Type.FACE_DETECTION,
},
],
});
Just in case noone will come up with solution that would force API to return more results, a pseudocode:
def process(image)
faces = process image
return faces if faces.size < 10
split image into two a bit overlapping half1 and half2
# we do overlapping because splitting may split a face
a = process(half1)
b = process(half2)
return a + b - intersection(a + b)
The intersection function should throw out those images that are on the same (taking in mind the possible +/-few pixel errors) coordinates plus the shift that we had between half1 and half2 withing the image.