Palindrome rearrangement in Python - python-3.x

I am given a string and I have to determine whether it can be rearranged into a palindrome.
For example: "aabb" is true.
We can rearrange "aabb" to make "abba", which is a palindrome.
I have come up with the code below but it fails in some cases. Where is the problem and how to fix this?
def palindromeRearranging(inputString):
a = sorted(inputString)[::2]
b = sorted(inputString)[1::2]
return b == a[:len(b)]

def palindromeRearranging(inputString):
return sum(map(lambda x: inputString.count(x) % 2, set(inputString))) <= 1
this code counts occurrence for every character in string. in palindromes there is one character with odd occurrence if length of string is odd, if length of string is even then no character has odd occurance.
see here

def palindromeRearranging(inputString):
elements = {c:inputString.count(c) for c in set(inputString)}
even = [e % 2 == 0 for e in elements.values()]
return all(even) or (len(inputString) % 2 == 1 and even.count(False) == 1)
It counts each character number of appearances, and checks whether all elements appear an even number of times or if the length of the input string is odd, checks whether only one character appears an odd number of times.

Python3
def palindromeArrange (string):
string = list(string)
for i in range (len(string)):
"""if the string has even element count"""
if len(string) % 2 == 0 and len(string)/2 == len (set (string)):
return True
"""if the string has odd element count"""
if len(string) - ((len(string)-1)/2) == len (set (string)):
return True
return False

One liner using list comprehension in Python3
return len([x for x in set(inputString) if inputString.count(x) % 2 != 0]) <= 1
Basically counts those characters that have counts that aren't divisible by 2.
For even strings it would be zero, and for odd strings, it would be one.

The solution I can think of right away has time complexity is O(n). The assumption is, palindrome can not be made if there is more than one character with the odd count.
def solution(inputString):
string = list(inputString)
n = len(string)
s_set= set(string)
from collections import Counter
dic = Counter(string)
k =0 #counter for odd characters
for char in s_set:
if dic.get(char)%2!=0:
k+=1
if k>1:
return False
else:
return True

Related

The algorithm receives a natural number N > 1 as input and builds a new number R from it as follows:

Python.
It's a problem:
The algorithm receives a natural number N > 1 as input and builds a new number R from it as follows:
We translate the number N into binary notation.
Invert all bits of the number except the first one.
Convert to decimal notation.
Add the result with the original number N.
The resulting number is the desired number R. Indicate the smallest odd number N for which the result of this algorithm is greater than 310. In your answer, write this number in decimal notation.
This is my solution:
for n in range(2, 10000):
s = bin(n)[2:]
for i in range(len(s)):
if s[i+1] == 0:
s[i] = '1'
else:
s[i] = 'k'
for i in range(len(s)):
if s[i] == 'k':
s[i] = '0'
h = int(s, 2)
r = h + n
if n % 2 == 1 and r > 310:
print(n)
break
So it doesn't work and i dont know why. I am now preparing for the exam, so I would be grateful if you could explain the reason to me
the bin function returns a string and my idea is to go through the binary elements of this string, starting from the second element, to replace 0 with 1, and 1 with k. Then iterate over the elements of a new line again and replace k with 0
Took me longer than I expected but feels good.
Comments might make it look chaotic but will make it easily understandable.
#since N is supposed to be odd and >1 the loop is being run from 3
for N in range(3, 10000,2):
#appending binary numbers to the list bin_li
bin_li=[]
bin_li.append((bin(N)[2:]))
for i in bin_li:
#print("bin_li item :",i)
#storing 1st digit to be escaped in j
j=i[:1]
#reversing the digits
for k in i[1:]:
if k=='0':
#putting together the digits after reversing
j=j+'1'
else:
j=j+'0'
#print("reversed item :",j) #note first digit is escaped
#converting back to decimal
dec=int(j,2)
R=dec+N
#print("current sum:---------" ,R)
if R > 310:
print("The number N :",N)
print("The reversed binary number:",dec)
print("Sum :",R)
break
#break will only break the inner loop
# for reference https://www.geeksforgeeks.org/how-to-break-out-of-multiple-loops-in-python/
else:
continue
break

Why doesn't this function always return the longest palindromic substring in a string?

I wrote this solution to a codewars problem (https://www.codewars.com/kata/longest-palindrome). It passes all but one of the tests, in which it returns 2 instead of 7.
Why might this solution fail?
def longest_palindrome (s):
if s == '':
return 0
if len(s) == 1:
return 1
palindrome_lengths = []
for i in range(len(s)):
# determine all indices for the character
indices = []
for p, character in enumerate(s):
if character == s[i]:
indices.append(p)
# check if each substring is a palindrome and, if so, add length to palindrome_lengths
index = 1
while index < len(indices):
# grab the substring
substring = s[indices[0]:indices[index]+1]
# reverse the substring
reverse_substring = substring[::-1]
# if forward substring equals reverse, add length to a list of lengths
if substring == reverse_substring:
palindrome_lengths.append(len(substring))
index += 1
if palindrome_lengths == []:
return 1
else:
palindrome_lengths.sort(reverse=True)
return palindrome_lengths[0]
You never check any substring that doesn't start with the first occurrence of its first letter in the original string (for example, for the string "mamadam", you never test the substring starting with the second m).

How do you check if a given input is a palindrome?

I need to check if the input is a palindrome.
I converted the input to a string and compared the input with the reverse of the input using list slicing. I want to learn a different way without converting input to a string.
def palindrome(n):
num = str(n)
if num == num[::-1]:
return True
Assuming that n is a number, you can get digits from right to left and build a number with those digits from left to right:
n = 3102
m = n
p = 0
while m:
p = p*10 + m%10 # add the rightmost digit of m to the right of p
m //= 10 # remove the rightmost digit of m
print(p) # 2013
Hence the function:
def palindrome(n):
m = n
p = 0
while m:
p = p*10 + m%10
m //= 10
return p == n
Note that:
if num == num[::-1]:
return True
will return None if num != num[::-1] (end of the function). You should write:
if num == num[::-1]:
return True
else:
return False
Or (shorter and cleaner):
return num == num[::-1]
There can be 2 more approaches to that as follows:
Iterative Method: Run loop from starting to length/2 and check first character to last character of string and second to second last one and so on. If any character mismatches, the string wouldn’t be palindrome.
Sample Code Below:
def isPalindrome(str):
for i in xrange(0, len(str)/2):
if str[i] != str[len(str)-i-1]:
return False
return True
One Extra Variable Method: In this method, user take a character of string one by one and store in a empty variable. After storing all the character user will compare both the string and check whether it is palindrome or not.
Sample Code Below:
def isPalindrome(str):
w = ""
for i in str:
w = i + w
if (str==w):
return True
return False
You can try the following approach:
Extract all the digits from the number n
In each iteration, append the digit to one list (digits) and at that digit at the beginning of another list (reversed_digits)
Once all digits have been extracted, compare both lists
def palindrome(n):
digits = []
reversed_digits = []
while n > 0:
digit = n % 10
digits.append(digit)
reversed_digits.insert(0, digit)
n //= 10
return digits == reversed_digits
Note: this might not be the most efficient way to solve this problem, but I think it is very easy to understand.

Strings in python 3.7

How to count sub-strings in a string?
Example: findSubstrings("foxcatfox","fox") # should return 2
If recursion is really a must, you can try dividing the problem first.
Say if you found a matching substring at position i, then the total number of substring is 1 + findSub(string[i+1:], sub), so you can write something like this:
def findSubstringsRecursive(string, substring):
counter = 0
substringLength = len(substring)
for i in range(len(string)):
if string[i] == substring[0]:
end = i + substringLength
sub1 = string[i:end]
if substring == sub1:
return 1 + findSubstringsRecursive(string[i+1:], substring)
return 0
The following pure recursive approach is simple enough (apart from the bool->int coercion):
def findRec(s, pat):
if len(s) < len(pat): # base case should be obvious
return 0
return (pat == s[:len(pat)]) + findRec(s[1:], pat) # recurse with smaller size
>>> findSubstrings('foxcatfox', 'fox')
2
>>> findSubstrings('foxcatfox', 'foxc')
1
>>> findSubstrings('foxcat', 'dog')
0
I should note that this counts overlapping occurrences which may or may not be desired. One might also add protection against or define behaviour for an empty substring.

Lexicographically smallest palindrome in python

I found this question to be interesting and I would like to share this here and find reasonably good codes, specific to py :
Given a string S having characters from English alphabets ['a' - 'z'] and '.' as the special character (without quotes).
Write a program to construct the lexicographically smallest palindrome by filling each of the faded character ('.') with a lower case alphabet.
Definition:
The smallest lexicographical order is an order relation where string s is smaller than t, given the first character of s (s1 ) is smaller than the first character of t (t1 ), or in case they
are equivalent, the second character, etc.
For example : "aaabbb" is smaller than "aaac" because although the first three characters
are equal, the fourth character b is smaller than the fourth character c.
Input Format:
String S
Output Format:
Print lexicographically smallest palindrome after filling each '.' character, if it
possible to construct one. Print -1 otherwise.
Example-1
Input:
a.ba
Output:
abba
Example-2:
Input:
a.b
Output:
-1
Explanation:
In example 1, you can create a palindrome by filling the '.' character by 'b'.
In example 2, it is not possible to make the string s a palindrome.
You can't just copy paste questions from NPTEL assignments and ask them here without even trying!
Anyways,since the "code" is your only concern,try copy pasting the lines below:
word = input()
length = len(word)
def SmallestPalindrome(word, length):
i = 0
j = length - 1
word = list(word) #creating a list from the input word
while (i <= j):
if (word[i] == word[j] == '.'):
word[i] = word[j] = 'a'
elif word[i] != word[j]:
if (word[i] == '.'):
word[i] = word[j]
elif (word[j] == '.'):
word[j] = word[i]
else: # worst case situation when palindrome condition is not met
return -1
i = i + 1
j = j - 1
return "".join(word) # to turn the list back to a string
print(SmallestPalindrome(word, length)) #Print the output of your function
s=input()
s=list(s)
n=len(s)
j=n
c=0
for i in range(n):
j=j-1
if((s[i]==s[j]) and (i==j) and (s[i]=='.' and s[j]=='.')):
s[i]='a'
s[j]='a'
elif(s[i]==s[j]):
continue
elif((s[i]!=s[j]) and (i!=j) and (s[i]=='.' or s[j]=='.')):
if(s[i]!='.'):
s[j]=s[i]
else:
s[i]=s[j]
elif((i==j) and (s[i]=='.')):
s[i]=a
else:
c=c+1
break
if(c<1):
for k in s:
print(k,end="")
else:print("-1")

Resources