I have a dataframe df as this one:
my_list
Index
0 [81310, 81800]
1 [82160]
2 [75001, 75002, 75003, 75004, 75005, 75006, 750...
3 [95190]
4 [38170, 38180]
5 [95240]
6 [71150]
7 [62520]
I have a list named code with at least one element.
code = ['75008', '75015']
I want to create another column in my DataFrame named my_min, containing the minimum absolute difference between each element of the list code and the list from df.my_list.
Here are the commands I tried :
df.loc[:, 'my_list'] = min([abs(int(x)-int(y)) for x in code for y in df.loc[:, 'my_list'].str[:]])
>>> TypeError: int() argument must be a string, a bytes-like object or a number, not 'list'
#or
df.loc[:, 'my_list'] = min([abs(int(x)-int(y)) for x in code for y in df.loc[:, 'my_list']])
>>> TypeError: int() argument must be a string, a bytes-like object or a number, not 'list'
#or
df.loc[:, 'my_list'] = min([abs(int(x)-int(y)) for x in code for y in df.loc[:, 'my_list'].tolist()])
>>> TypeError: int() argument must be a string, a bytes-like object or a number, not 'list'
#or
df.loc[:, 'my_list'] = min([abs(int(x)-int(y)) for x in code for y in z for z in df.loc[:, 'my_list'].str[:]])
>>> UnboundLocalError: local variable 'z' referenced before assignment
#or
df.loc[:, 'my_list'] = min([abs(int(x)-int(y)) for x in code for y in z for z in df.loc[:, 'my_list']])
>>> UnboundLocalError: local variable 'z' referenced before assignment
#or
df.loc[:, 'my_list'] = min([abs(int(x)-int(y)) for x in code for y in z for z in df.loc[:, 'my_list'].tolist()])
>>> UnboundLocalError: local variable 'z' referenced before assignment
you could do this with a list comprehension:
import pandas as pd
import numpy as np
df = pd.DataFrame({'my_list':[[81310, 81800],[82160]]})
code = ['75008', '75015']
pd.DataFrame({'my_min':[min([abs(int(i) - j) for i in code for j in x])
for x in df.my_list]})
returns
my_min
0 6295
1 7145
You could also use pd.Series.apply instead of the outer list, for example:
df.my_list.apply(lambda x: min([abs(int(i) - j) for i in code for j in x]) )
Write a helper: def find_min(lst): -- it is clear you know how to do that. The helper will consult a global named code.
Then apply it:
df['my_min'] = df.my_list.apply(find_min)
The advantage of breaking out a helper
is you can write separate unit tests for it.
If you prefer to avoid globals,
you will find partial quite helpful.
https://docs.python.org/3/library/functools.html#functools.partial
If you have pandas 0.25+ you can use explode and combine with np.min:
# sample data
df = pd.DataFrame({'my_list':
[[81310, 81800], [82160], [75001,75002]]})
code = ['75008', '75015']
# concatenate the lists into one series
s = df.my_list.explode()
# convert `code` into np.array
code = np.array(code, dtype=int)
# this is the output series
pd.Series(np.min(np.abs(s.values[:,None] - code),axis=1),
index=s.index).min(level=0)
Output:
0 6295
1 7145
2 6
dtype: int64
Related
I have a Dataframe df.
One of the columns is named Adress and contains a string.
I have created a function processing(string) which takes as argument a string a returns a part of this string.
I succeeded to apply the function to df and create a new column in df with:
df.loc[:, 'new_col_name`] = df.loc[:, 'Adress`].apply(processing)
I modified my function processing(string) in such a way it returns two strings. I would like the second string returned to be stored in another new column.
To do so I tried to follow the steps given in : Create multiple pandas DataFrame columns from applying a function with multiple returns
Here is an example of my function processing(string):
def processing(string):
#some processing
return [A_string, B_string]
I also tried to return the two strings in a tuple.
Here are the different ways I tried to apply the function to my df :
df.loc[:, '1st_new_col'], df.loc[:, '2nd_new_col'] = df.loc[:, 'Adress'].apply(processing)
>>> ValueError: too many values to unpack (expected 2)
#or
df.loc[:, '1st_new_col'], df.loc[:, '2nd_new_col'] = df.loc[:, 'Adress'].astype(str).apply(processing)
>>> ValueError: too many values to unpack (expected 2)
#or
df.loc[:, ['1st_new_col', '2nd_new_col']] = df.loc[:, 'Adress'].apply(processing)
>>> KeyError: "None of [Index(['1st_new_col', '2nd_new_col'], dtype='object')] are in the [columns]"
#or
df.loc[:, ['1st_new_col', '2nd_new_col']] = df.loc[:, 'Adress'].apply(processing, axis=1)
>>> TypeError: processing() got an unexpected keyword argument 'axis'
#or
df.loc[:, ['1st_new_col', '2nd_new_col']] = df.apply(lambda x: processing(x['Adress'], axis=1)
>>> KeyError: "None of [Index(['1st_new_col', '2nd_new_col'], dtype='object')] are in the [columns]"
#or
df.loc[:, ['1st_new_col', '2nd_new_col']] = df.apply(lambda x: processing(x['Adress'].astype(str), axis=1)
>>> AttributeError: 'str' object has no attribute 'astype'
#This is the only Error I could understand
#or
df.loc[:, ['1st_new_col', '2nd_new_col']] = df.apply(lambda x: processing(x['Adress'])
>>> KeyError: 'Adress'
I think I am close, but I have no ideas about how to get it.
Try:
df["Adress"].apply(process)
Also, it's better to return a pd.Series in the apply function.
Here one example:
# build example dataframe
df = pd.DataFrame(data={'Adress' : ['Word_1_1 Word_1_2','Word_2_1 Word_2_2','Word_3_1 Word_3_2','Word_4_1 Word_4_2']})
print(df)
# Adress
# 0 Word_1_1 Word_1_2
# 1 Word_2_1 Word_2_2
# 2 Word_3_1 Word_3_2
# 3 Word_4_1 Word_4_2
# Define your own function : here return two elements
def process(my_str):
l = my_str.split(" ")
return pd.Series(l)
# Apply the function and store the output in two new columns
df[["new_col_1", "new_col_2"]] = df["Adress"].apply(process)
print(df)
# Adress new_col_1 new_col_2
# 0 Word_1_1 Word_1_2 Word_1_1 Word_1_2
# 1 Word_2_1 Word_2_2 Word_2_1 Word_2_2
# 2 Word_3_1 Word_3_2 Word_3_1 Word_3_2
# 3 Word_4_1 Word_4_2 Word_4_1 Word_4_2
You can try this.
df['new_column'] = df.apply(lambda row: processing(row['Address']), axis=1)
or this.
df['new_column'] = df['Address'].apply(lambda value: processing(value))
When I run this code it returns that the numpy.ndarray object has no attributes. I'm trying to write a function that in case the number given is in the array will return with the position of that number in the array.
a = np.c_[np.array([1, 2, 3, 4, 5])]
x = int(input('Type a number'))
def findelement(x, a):
if x in a:
print (a.index(x))
else:
print (-1)
print(findelement(x, a))
Please use np.where instead of list.index.
import numpy as np
a = np.c_[np.array([1, 2, 3, 4, 5])]
x = int(input('Type a number: '))
def findelement(x, a):
if x in a:
print(np.where(a == x)[0][0])
else:
print(-1)
print(findelement(x, a))
Result:
Type a number: 3
2
None
Note np.where returns the indices of elements in an input array where
the given condition is satisfied.
You should check out np.where and np.argwhere.
i have this problem to solve, this is a continuation of a previus question How to iterate over pandas df with a def function variable function and the given answer worked perfectly, but now i have to append all the data in a 2 columns dataframe (Adduct_name and mass).
This is from the previous question:
My goal: i have to calculate the "adducts" for a given "Compound", both represents numbes, but for eah "Compound" there are 46 different "Adducts".
Each adduct is calculated as follow:
Adduct 1 = [Exact_mass*M/Charge + Adduct_mass]
where exact_mass = number, M and Charge = number (1, 2, 3, etc) according to each type of adduct, Adduct_mass = number (positive or negative) according to each adduct.
My data: 2 data frames. One with the Adducts names, M, Charge, Adduct_mass. The other one correspond to the Compound_name and Exact_mass of the Compounds i want to iterate over (i just put a small data set)
Adducts: df_al
import pandas as pd
data = [["M+3H", 3, 1, 1.007276], ["M+3Na", 3, 1, 22.989], ["M+H", 1, 1,
1.007276], ["2M+H", 1, 2, 1.007276], ["M-3H", 3, 1, -1.007276]]
df_al = pd.DataFrame(data, columns=["Ion_name", "Charge", "M", "Adduct_mass"])
Compounds: df
import pandas as pd
data1 = [[1, "C3H64O7", 596.465179], [2, "C30H42O7", 514.293038], [4,
"C44H56O8", 712.397498], [4, "C24H32O6S", 448.191949], [5, "C20H28O3",
316.203834]]
df = pd.DataFrame(data1, columns=["CdId", "Formula", "exact_mass"])
The solution to this problem was:
df_name = df_al["Ion_name"]
df_mass = df_al["Adduct_mass"]
df_div = df_al["Charge"]
df_M = df_al["M"]
#Defining general function
def Adduct(x,i):
return x*df_M[i]/df_div[i] + df_mass[i]
#Applying general function in a range from 0 to 5.
for i in range(5):
df[df_name.loc[i]] = df['exact_mass'].map(lambda x: Adduct(x,i))
Output
Name exact_mass M+3H M+3Na M+H 2M+H M-3H
0 a 596.465179 199.829002 221.810726 597.472455 1193.937634 197.814450
1 b 514.293038 172.438289 194.420013 515.300314 1029.593352 170.423737
2 c 712.397498 238.473109 260.454833 713.404774 1425.802272 236.458557
3 d 448.191949 150.404592 172.386316 449.199225 897.391174 148.390040
4 e 316.203834 106.408554 128.390278 317.211110 633.414944 104.39400
Now that is the rigth calculations but i need now a file where:
-only exists 2 columns (Name and mass)
-All the different adducts are appended one after another
desired out put
Name Mass
a_M+3H 199.82902
a_M+3Na 221.810726
a_M+H 597.472455
a_2M+H 1193.937634
a_M-3H 197.814450
b_M+3H 514.293038
.
.
.
c_M+3H
and so on.
Also i need to combine the name of the respective compound with the ion form (M+3H, M+H, etc).
At this point i have no code for that.
I would apprecitate any advice and a better approach since the begining.
This part is an update of the question above:
Is posible to obtain and ouput like this one:
Name Mass RT
a_M+3H 199.82902 1
a_M+3Na 221.810726 1
a_M+H 597.472455 1
a_2M+H 1193.937634 1
a_M-3H 197.814450 1
b_M+3H 514.293038 3
.
.
.
c_M+3H 2
The RT is the same value for all forms of a compound, in this example is RT for a =1, b = 3, c =2, etc.
Is posible to incorporate (Keep this column) from the data set df (which i update here below)?. As you can see that df has more columns like "Formula" and "RT" which desapear after calculations.
import pandas as pd
data1 = [[a, "C3H64O7", 596.465179, 1], [b, "C30H42O7", 514.293038, 3], [c,
"C44H56O8", 712.397498, 2], [d, "C24H32O6S", 448.191949, 4], [e, "C20H28O3",
316.203834, 1.5]]
df = pd.DataFrame(data1, columns=["Name", "Formula", "exact_mass", "RT"])
Part three! (sorry and thank you)
this is a trial i did on a small data set (df) using the code below, with the same df_al of above.
df=
Code
#Defining variables for calculation
df_name = df_al["Ion_name"]
df_mass = df_al["Adduct_mass"]
df_div = df_al["Charge"]
df_M = df_al["M"]
df_ID= df["Name"]
#Defining the RT dictionary
RT = dict(zip(df["Name"], df["RT"]))
#Removing RT column
df=df.drop(columns=["RT"])
#Defining general function
def Adduct(x,i):
return x*df_M[i]/df_div[i] + df_mass[i]
#Applying general function in a range from 0 to 46.
for i in range(47):
df[df_name.loc[i]] = df['exact_mass'].map(lambda x: Adduct(x,i))
df
output
#Melting
df = pd.melt(df, id_vars=['Name'], var_name = "Adduct", value_name= "Exact_mass", value_vars=[x for x in df.columns if 'Name' not in x and 'exact' not in x])
df['name'] = df.apply(lambda x:x[0] + "_" + x[1], axis=1)
df['RT'] = df.Name.apply(lambda x: RT[x[0]] if x[0] in RT else np.nan)
del df['Name']
del df['Adduct']
df['RT'] = df.name.apply(lambda x: RT[x[0]] if x[0] in RT else np.nan)
df
output
Why NaN?
Here is how I will go about it, pandas.melt comes to rescue:
import pandas as pd
import numpy as np
from io import StringIO
s = StringIO('''
Name exact_mass M+3H M+3Na M+H 2M+H M-3H
0 a 596.465179 199.829002 221.810726 597.472455 1193.937634 197.814450
1 b 514.293038 172.438289 194.420013 515.300314 1029.593352 170.423737
2 c 712.397498 238.473109 260.454833 713.404774 1425.802272 236.458557
3 d 448.191949 150.404592 172.386316 449.199225 897.391174 148.390040
4 e 316.203834 106.408554 128.390278 317.211110 633.414944 104.39400
''')
df = pd.read_csv(s, sep="\s+")
df = pd.melt(df, id_vars=['Name'], value_vars=[x for x in df.columns if 'Name' not in x and 'exact' not in x])
df['name'] = df.apply(lambda x:x[0] + "_" + x[1], axis=1)
del df['Name']
del df['variable']
RT = {'a':1, 'b':2, 'c':3, 'd':5, 'e':1.5}
df['RT'] = df.name.apply(lambda x: RT[x[0]] if x[0] in RT else np.nan)
df
Here is the output:
Given a pd.Series, I would like to replace null values with a list. That is, given:
import numpy as np
import pandas as pd
ser = pd.Series([0,1,np.nan])
I want a function that would return
0 0
1 1
2 [nan]
But if I try using the natural function for this, namely fillna:
result = ser.fillna([np.nan])
but I get the error
TypeError: "value" parameter must be a scalar or dict, but you passed a "list"
Any suggestions of a simple way to acheive this?
Use apply, because fillna working with scalars only:
print (ser.apply(lambda x: [np.nan] if pd.isnull(x) else x))
0 0
1 1
2 [nan]
dtype: object
You can change to object
ser=ser.astype('object')
Then assign the list np.nan
ser.loc[ser.isnull()]=[[np.nan]]
I ended up using
ser.loc[ser.isnull()] = ser.loc[ser.isnull()].apply(lambda x: [np.nan])
because pd.isnull(x) would give me ambiguous truth values error ( i have other lists in my series too ). This is a combination of YOBEN_S' and jezrael's answer.
fillna can take a Series, and a list can be converted to a Series. Wrapping your list in pd.Series() worked for me:
result = ser.fillna(pd.Series([np.nan]))
result
0 0.0
1 1.0
2 NaN
dtype: float64
I can subscript a range object:
>>> r = range(4)
>>> r
range(0, 4)
>>> r[3]
3
>>> for i in r:
print(i)
0
1
2
3
>>> list(r)
[0, 1, 2, 3]
But, if I call reversed on the same range object:
>>> r = reversed(range(4))
>>> r
<range_iterator object at memaddr>
>>> for i in r:
print(i)
3
2
1
0
>>> r[3]
TypeError: 'range_iterator' object is not subscriptable # ?
>>> range(r)
TypeError: 'range_iterator' cannot be interpreted as an integer # ?
>>> list(r)
[] # ? uhmm
Hmm... Acting kinda like a generator but less useful.
Is there a reason a reversed range object isn't like a normal generator / iterator in how it quacks?
The reversed function returns an iterator, not a sequence. That's just how it's designed. The range_iterator you're seeing is essentially iter called on the reversed range you seem to want.
To get the reversed sequence rather than a reverse iterator, use the "alien smiley" slice: r[::-1] (where r is the value you got from range). This works both in Python 2 (where range returns a list) and in Python 3 (where range returns a sequence-like range object).
You need to change r back to a list type. For example:
reversed([1,2]) #prints <listreverseiterator object at 0x10a0039d0>
list(reversed([1,2])) #prints [2,1]
Edit
To clarify what you are asking, here is some sample I/O:
>>> r = range(5)
>>> x = reversed(r)
>>> print x
<listreverseiterator object at 0x10b6cea90>
>>> x[2]
Traceback (most recent call last):
File "<pyshell#24>", line 1, in <module>
x[2]
TypeError: 'listreverseiterator' object has no attribute '__getitem__'
>>> x = list(x)
>>> x[2] #it works here
2