Kotlin : How to Class().fooA().fooB() - android-studio

I am currently taking my code skill to the more advanced level in order to achieved "easier maintain code", I got this problem
val attachView = Custom()
attachView.setRoot(root)
attachView.setAdded(add)
attachView.build()
Those code, as you can see I repeatedly calling attachView over and over again. it works fine, but I want it to be more compact by eliminating calling attachView multiple time. My final aim is just like this
Custom().setRoot().setAdded().build()
is there any method that I must to know in order to build something like that ?

No external method will give you such semantics:
Custom().setRoot().setAdded().build()
It can be achieved by changing the internals of Customer class. So that the setRoot() and setAdded() will return this. Like fun setRoot(root: Root): Custom, etc.
With Kotlin you can use several functions to avoid adding attachView. before methods call. Like
-with
with(Custom()) {
setRoot(root)
setAdded(add)
build()
}
-apply
Custom().apply {
setRoot(root)
setAdded(add)
build()
}

val attachView = Custom().apply {
setRoot(root)
setAdded(add)
build()
}
If you really want a one-liner you can do this
val attachView = Custom().apply { setRoot(root); setAdded(add); build() }

Related

In Kotlin Native, how to keep an object around in a separate thread, and mutate its state from any other thead without using C pointers?

I'm exploring Kotlin Native and have a program with a bunch of Workers doing concurrent stuff
(running on Windows, but this is a general question).
Now, I wanted to add simple logging. A component that simply logs strings by appending them as new lines to a file that is kept open in 'append' mode.
(Ideally, I'd just have a "global" function...
fun log(text:String) {...} ]
...that I would be able to call from anywhere, including from "inside" other workers and that would just work. The implication here is that it's not trivial to do this because of Kotlin Native's rules regarding passing objects between threads (TLDR: you shouldn't pass mutable objects around. See: https://github.com/JetBrains/kotlin-native/blob/master/CONCURRENCY.md#object-transfer-and-freezing ).
Also, my log function would ideally accept any frozen object. )
What I've come up with are solutions using DetachedObjectGraph:
First, I create a detached logger object
val loggerGraph = DetachedObjectGraph { FileLogger("/foo/mylogfile.txt")}
and then use loggerGraph.asCPointer() ( asCPointer() ) to get a COpaquePointer to the detached graph:
val myPointer = loggerGraph.asCPointer()
Now I can pass this pointer into the workers ( via the producer lambda of the Worker's execute function ), and use it there. Or I can store the pointer in a #ThreadLocal global var.
For the code that writes to the file, whenever I want to log a line, I have to create a DetachedObjectGraph object from the pointer again,
and attach() it in order to get a reference to my fileLogger object:
val fileLogger = DetachedObjectGraph(myPointer).attach()
Now I can call a log function on the logger:
fileLogger.log("My log message")
This is what I've come up with looking at the APIs that are available (as of Kotlin 1.3.61) for concurrency in Kotlin Native,
but I'm left wondering what a better approach would be ( using Kotlin, not resorting to C ). Clearly it's bad to create a DetachedObjectGraph object for every line written.
One could pose this question in a more general way: How to keep a mutable resource open in a separate thread ( or worker ), and send messages to it.
Side comment: Having Coroutines that truly use threads would solve this problem, but the question is about how to solve this task with the APIs currently ( Kotlin 1.3.61 ) available.
You definitely shouldn't use DetachedObjectGraph in the way presented in the question. There's nothing to prevent you from trying to attach on multiple threads, or if you pass the same pointer, trying to attach to an invalid one after another thread as attached to it.
As Dominic mentioned, you can keep the DetachedObjectGraph in an AtomicReference. However, if you're going to keep DetachedObjectGraph in an AtomicReference, make sure the type is AtomicRef<DetachedObjectGraph?> and busy-loop while the DetachedObjectGraph is null. That will prevent the same DetachedObjectGraph from being used by multiple threads. Make sure to set it to null, and repopulate it, in an atomic way.
However, does FileLogger need to be mutable at all? If you're writing to a file, it doesn't seem so. Even if so, I'd isolate the mutable object to a separate worker and send log messages to it rather than doing a DetachedObjectGraph inside an AtomicRef.
In my experience, DetachedObjectGraph is super uncommon in production code. We don't use it anywhere at the moment.
To isolate mutable state to a Worker, something like this:
class MutableThing<T:Any>(private val worker:Worker = Worker.start(), producer:()->T){
private val arStable = AtomicReference<StableRef<T>?>(null)
init {
worker.execute(TransferMode.SAFE, {Pair(arStable, producer).freeze()}){
it.first.value = StableRef.create(it.second()).freeze()
}
}
fun <R> access(block:(T)->R):R{
return worker.execute(TransferMode.SAFE, {Pair(arStable, block).freeze()}){
it.second(it.first.value!!.get())
}.result
}
}
object Log{
private val fileLogger = MutableThing { FileLogger() }
fun log(s:String){
fileLogger.access { fl -> fl.log(s) }
}
}
class FileLogger{
fun log(s:String){}
}
The MutableThing uses StableRef internally. producer makes the mutable state you want to isolate. To log something, call Log.log, which will wind up calling the mutable FileLogger.
To see a basic example of MutableThing, run the following test:
#Test
fun goIso(){
val mt = MutableThing { mutableListOf("a", "b")}
val workers = Array(4){Worker.start()}
val futures = mutableListOf<Future<*>>()
repeat(1000) { rcount ->
val future = workers[rcount % workers.size].execute(
TransferMode.SAFE,
{ Pair(mt, rcount).freeze() }
) { pair ->
pair.first.access {
val element = "ttt ${pair.second}"
println(element)
it.add(element)
}
}
futures.add(future)
}
futures.forEach { it.result }
workers.forEach { it.requestTermination() }
mt.access {
println("size: ${it.size}")
}
}
The approach you've taken is pretty much correct and the way it's supposed to be done.
The thing I would add is, instead of passing around a pointer around. You should pass around a frozen FileLogger, which will internally hold a reference to a AtomicRef<DetachedObjectGraph>, the the attaching and detaching should be done internally. Especially since DetachedObjectGraphs are invalid once attached.

Workaround for lack of generators/yield keyword in Groovy

Wondering if there is a way I can use sql.eachRow like a generator, to use it in a DSL context where a Collection or Iterator is expected. The use case I'm trying to go for is streaming JSON generation - what I'm trying to do is something like:
def generator = { sql.eachRow { yield it } }
jsonBuilder.root {
status "OK"
rows generator()
}
You would need continuation support (or similiar) for this to work to some extend. Groovy does not have continuations, the JVM also not. Normally continuation passing style works, but then the method eachRow would have to support that, which it of course does not. So the only way I see is a makeshift solution using threads or something like that. So maybe something like that would work for you:
def sync = new java.util.concurrent.SynchronousQueue()
Thread.start { sql.eachRow { sync.put(it) } }
jsonBuilder.root {
status "OK"
rows sync.take()
}
I am not stating, that this is a good solution, just a random consumer-producer-work-around for your problem.

how to cast/convert a Collection<T> to an Collection<U>

is there an easy way to do this whiteout using a loops?
how my classes looks like
class T
{
//some stuff
}
class U
{
//some stuff
public U(T myT)
{
//some stuff
}
}
i found on my research the following method List.ConvertAll but it is only for List now i want to know if someone knows a way to achieve this for Collections.
i would prefer a generic solution but anything that solve this in a performant way.
You can use a LINQ select for this:
var enumerableOfU = collectionOfT.Select(t => new U(t));
If you want to enumerate enumerableOfU multiple times, you should append .ToList() or .ToArray() after the Select.
Please note that this internally still uses loops, but you don't have to write it yourself.

Intercepting ClassCastException's in Groovy?

I have a lot of code using and expecting java.util.Date which I would like to migrate to org.joda.time.LocalDate. The problem is that most of the code is dynamically typed.
So I wonder if there is any groovy way to intercept the ClassCastException, do the conversion at runtime (instead of letting the exception bubble up) and log the operation (so I could fix the code).
Example:
import org.joda.time.LocalDate
def someMethod(date) {
println date.year()
}
// this call is ok
someMethod(new LocalDate())
// this call raises an exception
someMethod(new Date())
I don't want to modify the code above, like surrounding the second call with a try-catch and recalling with the right type. I wanted a way to do this globally.
Idea 1:
You can benefit from Groovy multimethods: you write a method overload for the JodaTime's and let the java.util.Date method be chosen when it is a dynamic method parameter:
def someMethod(date) {
println date.year()
}
My advice is to write in this class a overload of these methods doing the conversion:
def someMethod(LocalDate date) {
someMethod date.convertToJavaDate()
}
If you don't have access to that code, you can use metaprogramming.
Idea 2:
If you have a huge library, my guess is that you are better mixing JodaTime class. You will get a power benefit from duck typing. You will need to know which members from java.util.Date are called and reroute them to Joda's own methods:
class LocalDateMixin {
def year() { this[Calendar.YEAR] }
}
LocalDate.metaClass.mixin LocalDateMixin
You can also apply the metaprogramming using extension methods.

Best groovy closure idiom replacing java inner classes?

As new to groovy...
I'm trying to replace the java idiom for event listeners, filters, etc.
My working code in groovy is the following:
def find() {
ODB odb = ODBFactory.open(files.nodupes); // data nucleus object database
Objects<Prospect> src = odb.getObjects(new QProspect());
src.each { println it };
odb.close();
}
class QProspect extends SimpleNativeQuery {
public boolean match(Prospect p) {
if (p.url) {
return p.url.endsWith(".biz");
}
return false;
}
}
Now, this is far from what I'm used to in java, where the implementation of the Query interface is done right inside the odb.getObjects() method. If I where to code "java" I'd probably do something like the following, yet it's not working:
Objects<Prospect> src = odb.getObjects( {
boolean match(p) {
if (p.url) {
return p.url.endsWith(".biz");
}
return false;
}
} as SimpleNativeQuery);
Or better, I'd like it to be like this:
Objects<Prospect> src = odb.getObjects(
{ it.url.endsWith(".biz") } as SimpleNativeQuery
);
However, what groovy does it to associate the "match" method with the outer script context and fail me.
I find groovy... groovy anyways so I'll stick to learning more about it. Thanks.
What I should've asked was how do we do the "anonymous" class in groovy. Here's the java idiom:
void defReadAFile() {
File[] files = new File(".").listFiles(new FileFilter() {
public boolean accept(File file) {
return file.getPath().endsWith(".biz");
}
});
}
Can groovy be as concise with no additional class declaration?
I think it would have helped you to get answers if you'd abstracted the problem so that it didn't rely on the Neodatis DB interface -- that threw me for a loop, as I've never used it. What I've written below about it is based on a very cursory analysis.
For that matter, I've never used Groovy either, though I like what I've seen of it. But seeing as no one else has answered yet, you're stuck with me :-)
I think the problem (or at least part of it) may be that you're expecting too much of the SimpleNativeQuery class from Neodatis. It doesn't look like it even tries to filter the objects before it adds them to the returned collection. I think instead you want to use org.neodatis.odb.impl.core.query.criteria.CriteriaQuery. (Note the "impl" in the package path. This has me a bit nervous, as I don't know for sure if this class is meant to be used by callers. But I don't see any other classes in Neodatis that allow for query criteria to be specified.)
But instead of using CriteriaQuery directly, I think you'd rather wrap it inside of a Groovy class so that you can use it with closures. So, I think a Groovy version of your code with closures might look something like this:
// Create a class that wraps CriteriaQuery and allows you
// to pass closures. This is wordy too, but at least it's
// reusable.
import org.neodatis.odb.impl.core.query.criteria;
class GroovyCriteriaQuery extends CriteriaQuery {
private final c;
QProspect(theClosure) {
// I prefer to check for null here, instead of in match()
if (theClosure == null) {
throw new InvalidArgumentException("theClosure can't be null!");
}
c = theClosure;
}
public boolean match(AbstractObjectInfo aoi){
//!! I'm assuming here that 'aoi' can be used as the actual
//!! object instance (or at least as proxy for it.)
//!! (You may have to extract the actual object from aoi before calling c.)
return c(aoi);
}
}
// Now use the query class in some random code.
Objects<Prospect> src = odb.getObjects(
new GroovyCriteriaQuery(
{ it.url.endsWith(".biz") }
)
)
I hope this helps!
I believe your real question is "Can I use closures instead of anonymous classes when calling Java APIs that do not use closures". And the answer is a definite "yes". This:
Objects<Prospect> src = odb.getObjects(
{ it.url.endsWith(".biz") } as SimpleNativeQuery
);
should work. You write "However, what groovy does it to associate the "match" method with the outer script context and fail me". How exactly does it fail? It seems to me like you're having a simple technical problem to get the solution that is both "the groovy way" and exactly what you desire to work.
Yep, thanks y'all, it works.
I also found out why SimpleNativeQuery does not work (per Dan Breslau).
I tried the following and it worked wonderfully. So the idiom does work as expected.
new File("c:\\temp").listFiles({ it.path.endsWith(".html") } as FileFilter);
This next one does not work because of the neodatis interface. The interface does not enforce a match() method! It only mentions it in the documentation yet it's not present in the class file:
public class SimpleNativeQuery extends AbstactQuery{
}
Objects<Prospect> src = odb.getObjects(
{ it.url.endsWith(".biz") } as SimpleNativeQuery
);
In the above, as the SimpleNativeQuery does not have a match() method, it makes it impossible for the groovy compiler to identify which method in the SimpleNativeQuery should the closure be attached to; it then defaults to the outer groovy script.
It's my third day with groovy and I'm loving it.
Both books are great:
- Groovy Recipes (Scott Davis)
- Programming Groovy (Venkat Subramaniam)

Resources