How to do broadcast in Pulsar - apache-pulsar

I'm investigating a tech for our cluster. Pulsar looks good, but the usage looks more like a queueing system. Of course, queueing system is good to have, but I have a specific requirement: broadcasting.
We would like to use one machine to generate the data and publish it to a Pulsar topic. Then we use a group of servers, forming a replica. Each server consumes the message flow on that topic, and serves clients via WebSocket.
This is different than the Shared subscription, because each server needs to receive all messages, not a fraction of it.
I came to this post: https://kafkaesque.io/subscriptions-multiple-groups-of-consumers-on-pulsar-topic/ , which explains how to do such a job: each server needs create a new exclusive subscription, say use a UUID as its subscription name, from the unique exclusive subscription you can get the full message flow of that topic.
But since our server replica can be dynamic, so once some of the server restart, they will create new UUID subscription again, which will leave many orphan subscriptions on the topic, which eventually would become maintenance headache.
Anyone has the experience to setup a broadcast use case using Pulsar?

Actually, I found that the "Reader Interface" is exactly for this kind of use case:
https://pulsar.apache.org/docs/en/concepts-clients/#reader-interface

Using an exclusive subscription for each consumer is the only way to ensure that each of your consumers receives ALL of the messages on the topic, and Pulsar handles multiple subscriptions quite well.
The issue it seems is the server restart use case, and I don't think that simply connecting with a new UUID subscription is the right approach (putting aside the orphaned subscriptions). You really want to have the server reuse the previous subscription after it restarts. This is because each subscription keeps track of the last message in the topic that it had processed and acknowledged, so you can pick up exactly where you had left off before the server crashed if you reconnect with the same subscription UUID. If you connect with a new UUID, then you will start processing messages produced from that point in time forward, and all messages produced during the restart period will be "lost"
Therefore, you will need to find a mechanism to share these UUIDs across server failures and return them to the restarting server. One approach would be to have a mechanism similar to zookeeper leader election, in which each server is granted an exclusive lease that expires periodically. The server must then periodically refresh the lease to retain it. Then if the server were to crash, it would fail to refresh the lease on that UUID and the restarting server would then be granted the lease when it attempts to reconnect.
See https://curator.apache.org/curator-recipes/leader-election.html for a better explanation of the pattern.

Related

SocketIO scaling architecture and large rooms requirements

We are using socketIO on a large chat application.
At some points we want to dispatch "presence" (user availability) to all other users.
io.in('room1').emit('availability:update', {userid='xxx', isAvailable: false});
room1 may contains a lot of users (500 max). We observe a significant raise in our NodeJS load when many availability updates are triggered.
The idea was to use something similar to redis store with Socket IO. Have web browser clients to connect to different NodeJS servers.
When we want to emit to a room we dispatch the "emit to room1" payload to all other NodeJS processes using Redis PubSub ZeroMQ or even RabbitMQ for persistence. Each process will itself call his own io.in('room1').emit to target his subset of connected users.
One of the concern with this setup is that the inter-process communication may become quite busy and I was wondering if it may become a problem in the future.
Here is the architecture I have in mind.
Could you batch changes and only distribute them every 5 seconds or so? In other words, on each node server, simply take a 'snapshot' every X seconds of the current state of all users (e.g. 'connected', 'idle', etc.) and then send that to the other relevant servers in your cluster.
Each server then does the same, every 5 seconds or so it sends the same message - of only the changes in user state - as one batch object array to all connected clients.
Right now, I'm rather surprised you are attempting to send information about each user as a packet. Batching seems like it would solve your problem quite well, as it would also make better use of standard packet sizes that are normally transmitted via routers and switches.
You are looking for this library:
https://github.com/automattic/socket.io-redis
Which can be used with this emitter:
https://github.com/Automattic/socket.io-emitter
About available users function, I think there are two alternatives,you can create a "queue Users" where will contents "public data" from connected users or you can use exchanges binding information for show users connected. If you use an "user's queue", this will be the same for each "room" and you could update it when an user go out, "popping" its state message from queue (Although you will have to "reorganize" all queue message for it).
Nevertheless, I think that RabbitMQ is designed for asynchronous communication and it is not very useful approximation have a register for presence or not from users. I think it's better for applications where you don't know when the user will receive the message and its "real availability" ("fire and forget architectures"). ZeroMQ require more work from zero but you could implement something more specific for your situation with a better performance.
An publish/subscribe example from RabbitMQ site could be a good point to begin a new design like yours where a message it's sent to several users at same time. At summary, I will create two queues for user (receive and send queue messages) and I'll use specific exchanges for each "room chat" controlling that users are in each room using exchange binding's information. Always you have two queues for user and you create exchanges to binding it to one or more "chat rooms".
I hope this answer could be useful for you ,sorry for my bad English.
This is the common approach for sharing data across several Socket.io processes. You have done well, so far, with a single process and a single thread. I could lamely assume that you could pick any of the mentioned technologies for communicating shared data without hitting any performance issues.
If all you need is IPC, you could perhaps have a look at Faye. If, however, you need to have some data persisted, you could start a Redis cluster with as many Redis masters as you have CPUs, though this will add minor networking noise for Pub/Sub.

Cloud Architecture On Azure for Internet of Things

I'm working on a server architecture for sending/receiving messages from remote embedded devices, which will be hosted on Windows Azure. The front-facing servers are going to be maintaining persistent TCP connections with these devices, and I need a way to communicate with them on the backend.
Problem facts:
Devices: ~10,000
Frequency of messages device is sending up to servers: 1/min
Frequency of messages originating server side (e.g. from user actions, scheduled triggers, etc.): 100/day
Average size of message payload: 64 bytes
Upward communication
The devices send up messages very frequently (sensor readings). The constraints for that data are not very strong, due to the fact that we can aggregate/insert those sensor readings in a batched manner, and that they don't require in-order guarantees. I think the best way of handling them is to put them in a Storage Queue, and have a worker process poll the queue at intervals and dump that data. Of course, I'll have to be careful about making sure the worker process does this frequently enough so that the queue doesn't infinitely back up. The max batch size of Azure Storage Queues is 32, but I'm thinking of potentially pulling in more than that: something like publishing to the data store every 1,000 readings or 30 seconds, whichever comes first.
Downward communication
The server sends down updates and notifications much less frequently. This is a slightly harder problem, as I can see two viable paradigms here (with some blending in between). Could either:
Create a Service Bus Queue for each device (or one queue with thousands of subscriptions - limit is for number of queues is 10,000)
Have a state table housed in a DB that contains the latest "state" of a specific message type that the devices will get sent to them
With option 1, the application server simply enqueues a message in a fire-and-forget manner. On the front-end servers, however, there's quite a bit of things that have to happen. Concerns I can see include:
Monitoring 10k queues (or many subscriptions off of a queue - the
Azure SDK apparently reuses connections for subscriptions to the same
queue)
Connection Management
Should no longer monitor a queue if device disconnects.
Need to expire messages if device is disconnected for an extended period of time (so that queue isn't backed up)
Need to enable some type of "refresh" mechanism to update device's complete state when it goes back online
The good news is that service bus queues are durable, and with sessions can arrange messages to come in a FIFO manner.
With option 2, the DB would house a table that would maintain state for all of the devices. This table would be checked periodically by the front-facing servers (every few seconds or so) for state changes written to it by the application server. The front-facing servers would then dispatch to the devices. This removes the requirement for queueing of FIFO, the reasoning being that this message contains the latest state, and doesn't have to compete with other messages destined for the same device. The message is ephemeral: if it fails, then it will be resent when the device reconnects and requests to be refreshed, or at the next check interval of the front-facing server.
In this scenario, the need for queues seems to be removed, but the DB becomes the bottleneck here, and I fear it's not as scalable.
These are both viable approaches, and I feel this question is already becoming too large (although I can provide more descriptions if necessary). Just wanted to get a feel for what's possible, what's usually done, if there's something fundamental I'm missing, and what things in the cloud can I take advantage of to not reinvent the wheel.
If you can identify the device (may be device id/IMEI/Mac address) by the the message it sends then you can reduce the number of queues from 10,000 to 1 queue and not have 10000 subscriptions too. This could also help you in the downward communication as you will be able to identify the device and send the message to the appropriate socket.
As you mentioned the connections last longer you could deliver the command to the device that is connected and decide what to do with the commands to the device that are not connected.
Hope it helps

MQTT what is the purpose or usage of Last Will Testament?

I'm surely missing something about how the whole MQTT protocol works, as I can't grasp the usage pattern of Last Will Testament messages: what's their purpose?
One example I often see is about informing that a device has gone offline. It doesn't make very much sense to me, since it's obvious that if a device isn't publishing any data it may be offline or there could be some network problems.
So, what are some practical usages of the LWT? What was it invented for?
LWT messages are not really concerned about detecting whether a client has gone offline or not (that task is handled by keepAlive messages).
LWT messages are about what happens after the client has gone offline.
The analogy is that of a real last will:
If a person dies, she can formulate a testament, in which she declares what actions should be taken after she has passed away. An executor will heed those wishes and execute them on her behalf.
The analogy in the MQTT world is that a client can formulate a testament, in which it declares what message should be sent on it's behalf by the broker, after it has gone offline.
A fictitious example:
I have a sensor, which sends crucial data, but very infrequently.
It has formulated a last will statement in the form of [topic: '/node/gone-offline', message: ':id'], with :id being a unique id for the sensor. I also have a emergency-subscriber for the topic 'node/gone-offline', which will send a SMS to my phone every time a message is published on that channel.
During normal operation, the sensor will keep the connection to the MQTT-broker open by sending periodic keepAlive messages interspersed with the actual sensor readings. If the sensor goes offline, the connection to the broker will time out, due to the lack of keepAlives.
This is where LWT comes in: If no LWT is specified, the broker doesn't care and just closes the connection. In our case however, the broker will execute the sensor's last will and publish the LWT-message '/node/gone-offline: :id'. The message will then be consumed to my emergency-subscriber and I will be notified of the sensor's ID via SMS so that I can check up on what's going on.
In short:
Instead of just closing the connection after a client has gone offline, LWT messages can be leveraged to define a message to be published by the broker on behalf of the client, since the client is offline and cannot publish anymore.
Just because a device is not publishing does not mean it is not online or there is a network problem.
Take for example a sensor that monitors a value that only changes very infrequently, good design says that the sensor should only publish the changes to help reduce bandwidth usage as periodically publishing the same value is wasteful. If the value is published as a retained value then any new subscriber will always get the current value without having to wait for the sensor value to change and it publish again.
In this case the LWT is used to published when the sensor fails (or there is a network problem) so we know of the problem as soon at the client keep alive times out.
A in-depth article about Last-Will-and-Testament messages is available in the MQTT Essentials Blog Post series: http://www.hivemq.com/mqtt-essentials-part-9-last-will-and-testament/.
To summarize the blog post:
The Last Will and Testament feature is used in MQTT to notify other clients about an ungracefully disconnected client.
MQTT is often used in scenarios were unreliable networks are very common. Therefore it is assumed that some clients will disconnect ungracefully from time to time, because they lost the connection, the battery is empty or any other imaginable case. It would be good to know if a connected client has disconnected gracefully (which means with a MQTT DISCONNECT message) or not, in order to take appropriate action.

Distributed pub/sub with single consumer per message type

I have no clue if it's better to ask this here, or over on Programmers.SE, so if I have this wrong, please migrate.
First, a bit about what I'm trying to implement. I have a node.js application that takes messages from one source (a socket.io client), and then does processing on the message, which might result in zero or more messages back out, either to the sender, or other clients within that group.
For the processing, I would like to essentially just shove the message into a queue, then it works its way through various message processors that might kick off their own items, and eventually, the bit running socket.io is informed "Hey, send this message back"
As a concrete example, say a user signs into the service, that sign in message is then placed in the queue, where the authorization processor gets it, does it's thing, then places a message back in the queue saying the client's been authorized. This goes back to the socket.io socket that is connected to the client, along with other clients that might be interested. It can also go to other subsystems that might want to do more processing on authorization (looking up user info, sending more info to the client based on their data, etc).
If I wanted strong coupling, this would be easy, but I tried that before, and it just goes to a mess of spaghetti code that's very fragile, and I would like to avoid that. Another wrench in the setup is this should be cluster-able, which is where the real problem comes in. There might be more than one, say, authorization processor running. But the authorization message should be processed only once.
So, in short, I'm looking for a pattern/technique that will allow me to, essentially, have multiple "groups" of subscribers for a message, and the message will be processed only once per group.
I thought about maybe having each instance of a processor generate a unique name that would be used as a list in Reids. This name would then be registered with some sort of dispatch handler, and placed into a set for that group of subscribers. Then when a message arrives, the dispatch pulls a random member out of that set, and places it into that list. While it seems like this would work, it seems somewhat over-complicated and fragile.
The core problem is I've never designed a system like this, so I'm not even sure the proper terms to use or look up. If anyone can point me in the right direction for this, I would be most appreciative.
I think what your describing is similar to https://www.getbridge.com/ service. I it but ended up writing my own based on zeromq, it allows you to register services, req -> <- rec and channels which are pub / sub workers.
As for the design, I used a client -> broker -> services & channels which are all plug and play using auto discovery, you have the services register their schema with the brokers who open a tcp connection so that brokers on other servers can communicate with that broker groups services. Then internal services and clients connect via unix sockets or ipc channels which ever is preferred.
I ended up wrapping around the redis publish/subscribe functions a bit to do this. Each type of message processor gets a "group name", and there can be multiple instances of the processor within that group (so multiple instances of the program can run for clustering).
When publishing a message, I generate an incremental ID, then store the message in a string key with that ID, then publish the message ID.
On the receiving end, the first thing the subscriber does is attempt to add the message ID it just got from the publisher into a set of received messages for that group with sadd. If sadd returns 0, the message has already been grabbed by another instance, and it just returns. If it returns 1, the full message is pulled out of the string key and sent to the listener.
Of course, this relies on redis being single threaded, which I imagine will continue to be the case.
What you might be looking for is an AMQP protocol implementation,where you can have queue get custom exchanges,and implement a pub-sub model.
RabbitMQ - a popular amqp protocol implementation with lots of libraries
it also has node.js library

Detect and Delete Orphaned Queues, Topics, or Subscriptions on Azure Service Bus

If there are no longer any publishers or subscribers reading nor writing to a Queue, Topic, or Subscription, because of crashes or other abnormal terminations (instance restart, etc.), is that Queue/Topic/Subscription effectively orphaned?
I tested this by creating a few Queues, and then terminating the applications. Those Queues were still on the Service Bus a long time later. It seems that they will just stay there forever. That would be wonderful if we WANTED that behavior, but in this case, we do not.
How can we detect and delete these Queues, Topics, and Subscriptions? They will count towards Azure limits, etc, and we cannot have these orphaned processes every time an instance is restarted/patched/crashes.
If it helps make the question clearer, this is a unique situation in which the Queues/Topics/Subscriptions have special names, or special Filters, and a very limited set of publishers (1) and subscribers (1) for a limited time. This is not a case where we want survivability. These are instance-specific response channels. Whether we use Queues or Subscriptions is immaterial. If the instance is gone, so is the need for that Queue (or Subscription).
This is part of a solution where each web role has a dedicated response channel that it monitors. At any time, this web role may have dozens of requests pending via other messaging channels (Queues/Topics), and it is waiting for the answers on multiple threads. We need the response to come back to the thread that placed the message, so that the web role can respond to the caller. It is no good in this situation to simply have a Subscription based on the machine, because it will be receiving messages for other threads. We need each publishing thread to establish a dedicated response channel, so that the only thing on that channel is the response for that thread.
Even if we use Subscriptions (with some kind of instance-related filter) to do a long-polling receive operation on the Subscription, if the web role instance dies, that Subscription will be orphaned, correct?
This question can be boiled down like so:
If there are no more publishers or subscribers to a Queue/Topic/Subscription, then that service is effectively orphaned. How can those orphans be detected and cleaned up?
In this scenario you are looking for the Queue/Subscriptions to be "dynamic" in nature. They would be created and removed based on use as opposed to the current explicit provisioning model for these entities. Service Bus provides you with the APIs to perform create/delete operations so you can plug these on role OnStart/OnStop events appropriately. If those operations fail for some reason then the orphaned entities will exist. Again you can run clean up operation on them based on some unique identifier for the name of the entities. An example of this can be seen here: http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/
In the near future we will add more metadata and query capabilities to Queues/Topics/Subscriptions so you can see when they were last accessed and make cleanup decisions.
Service Bus Queues are built using the “brokered messaging” infrastructure designed to integrate applications or application components that may span multiple communication protocols, data contracts, trust domains, and/or network environments. The allows for a mechanism to communicate reliably with durable messaging.
If a client (publisher) sends a message to a service bus queue and then crashes the message will be stored on the Queue until as consumer reads the message off the queue. Also if your consumer dies and restarts it will just poll the queue and pick up any work that is waiting for it (You can scale out and have multiple consumers reading from queue to increase throughput), Service Bus Queues allow you to decouple your applications via durable cloud gateway analogous to MSMQ on-premises (or other queuing technology).
What I'm really trying to say is that you won't get an orphaned queue, you might get poisoned messages that you will need to handled, this blog post gives some very detailed information re: Service Bus Queues and their Capacity and Quotas which might give you a better understanding http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
Re: Queue Management, you can do this via Visual Studio (1.7 SDK & Tools) or there is an excellent tool called Service Bus Explorer that will make your life easier for queue managagment: http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a
*Note the default maximum number of queues is 10,000 (per service namespace, this can be increased via a support call)
As Abhishek Lai mentioned there is no orphan detecting capability supported.
Orphan detection can be implement externally in multiple ways.
For example, whenever you send/receive a message, update a timestamp in an SQL database to indicate that the queue/tropic/subscription is still active. This timestamp can then be used to determine orphans.
If your process will crash which is very much possible there will be issue with the message delivery within the queue however queue will still be available to process your request. Handling Application Crashes and Unreadable Messages with Windows Azure Service Bus queues are described here:
The Service Bus provides functionality to help you gracefully recover from errors in your application or difficulties processing a message. If a receiver application is unable to process the message for some reason, then it can call the Abandon method on the received message (instead of the Complete method). This will cause the Service Bus to unlock the message within the queue and make it available to be received again, either by the same consuming application or by another consuming application.
In the event that the application crashes after processing the message but before the Complete request is issued, then the message will be redelivered to the application when it restarts. This is often called At Least Once Processing, that is, each message will be processed at least once but in certain situations the same message may be redelivered. If the scenario cannot tolerate duplicate processing, then application developers should add additional logic to their application to handle duplicate message delivery. This is often achieved using the MessageId property of the message, which will remain constant across delivery attempts.
If there are no longer any processes reading nor writing to a queue, because of crashes or other abnormal terminations (instance restart, etc.), is that queue effectively orphaned?
No the queue is in place to allow communication to occur via Brokered Messages, if all your apps die for some reason then the queue still exists and will be there when they become alive again, it's the communication channel for loosely decoupled applications. Regards Billing 'Messages are charged based on the number of messages sent to, or delivered by, the Service Bus during the billing month' you won't be charged if a queue exists but nobody is using it.
I tested this by creating a few queues, and then terminating the
applications. Those queues were still on the machine a long time
later.
The whole point of the queue is to guarantee message delivery of loosely decoupled applications. Think of the queue as an entity or application in its own right with high availability (SLA) as its hosted in Azure, your producer/consumers can die/restart and the queue will be active in Azure. *Note I got a bit confused with your wording re: "still on the machine a long time later", the queue doesn't actually live on your machine, it sits up in Azure in a designated service bus namespace. You can view and managed the queues via the tools I pointed out in the previous answer.
How can we detect and delete these queues, as they will count towards
Azure limits, etc.
As stated above the default maximum number of queues is 10,000 (per service namespace, this can be increased via a support call), queue management can be done via the tools stated in the other answer. You should only be looking to delete queue's when you no longer have producer/consumers looking to write to them (i.e. never again). You can of course create and delete queues in your producer/consumer applications via the namespaceManager.QueueExists, more information here How to Use Service Bus Queues
If it helps make the question clearer, this is a unique situation in which the queues have special names, and a very limited set of publishers (1) and subscribers (1) for a limited time.
It sounds like you need to use Topics & Subscriptions How to Use Service Bus Topics/Subscriptions, this link also has a section on 'How to Delete Topics and Subscriptions' If you have a very limited lifetime then you could handle topic creation/deletion in your app's otherwise you could have have a separate Queue/Topic/Subscription setup/deletion script to handle this logic...

Resources