1.The CSV that contains data(ie. text description) along with categorized labels
df = pd.read_csv('./output/csv_sanitized_16_.csv', dtype=str)
X = df['description_plus']
y = df['category_id']
2.This CSV contains unseen data(ie. text description) for which labels need to be predicted
df_2 = pd.read_csv('./output/csv_sanitized_2.csv', dtype=str)
X2 = df_2['description_plus']
Cross validation function that operates on the training data(item #1) above.
def cross_val():
cv = KFold(n_splits=20)
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
X_train = vectorizer.fit_transform(X)
clf = make_pipeline(preprocessing.StandardScaler(with_mean=False), svm.SVC(C=1))
scores = cross_val_score(clf, X_train, y, cv=cv)
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
cross_val()
I need to know how to pass the unseen data(item #2) to the cross validation function and how to predict the labels?
Using scores = cross_val_score(clf, X_train, y, cv=cv) you can only get the cross-validated scores of the model. cross_val_score will internally split the data into training and testing based on the cv parameter.
So the values that you get are the cross-validated accuracy of the SVC.
To get the score on the unseen data, you can first fit the model e.g.
clf = make_pipeline(preprocessing.StandardScaler(with_mean=False), svm.SVC(C=1))
clf.fit(X_train, y) # the model is trained now
and then do clf.score(X_unseen,y)
The last will return the accuracy of the model on the unseen data.
EDIT: The best way to do what you want is the following using a GridSearch to first find the best model using the training data and then evaluate the best model using the unseen (test) data:
from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
# load some data
iris = datasets.load_iris()
X, y = iris.data, iris.target
#split data to training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
# hyperparameter tunig of the SVC model
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svc = svm.SVC()
# fit the GridSearch using the TRAINING data
grid_searcher = GridSearchCV(svc, parameters)
grid_searcher.fit(X_train, y_train)
#recover the best estimator (best parameters for the SVC, based on the GridSearch)
best_SVC_model = grid_searcher.best_estimator_
# Now, check how this best model behaves on the test set
cv_scores_on_unseen = cross_val_score(best_SVC_model, X_test, y_test, cv=5)
print(cv_scores_on_unseen.mean())
Related
I have some label data and I am using the classification ML model (SVM, kNN) to train and test the dataset.
My input features look like:
(442, 443, 0.608923884514436), (444, 443, 0.6418604651162789)
The label looks like:
0, 1
Then I used sklearn to train and test (after splitting the dataset 80% for train and 20% for the test). Code sample is given below:
classifiers = [
SVC(),
KNeighborsClassifier(n_neighbors=5)]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
trainingData = X_train
trainingScores = y_train
for item in classifiers:
print(item)
clf = item
clf.fit(trainingData, trainingScores)
y_pred = clf.predict(X_test)
print("Accuracy Scor:")
print(accuracy_score(y_pred, y_test))
print("Confusion Matrix:")
print(confusion_matrix(y_pred, y_test))
print("Classification Report:")
print(classification_report(y_pred, y_test))
The SVC Accuracy Scor: 0.6639580602883355
The kNN Accuracy Scor: 0.7171690694626475
I can guess that the model is predicting some data correctly. My questions are
How can I save the prediction data including the label given by the model in a CSV file.
Is it possible to use the cross-validation concept here? For example, if I want to apply 5 cross-validations. Then, how can I do that?
import pandas as pd
labels_df = pd.DataFrame(y_pred ,columns=["predicted_label"])
labels_df.to_csv(r'Path where you want to store the exported CSV file\File Name.csv',index = False)
for second question check this
I have a very imbalanced dataset. I used sklearn.train_test_split function to extract the train dataset. Now I want to oversample the train dataset, so I used to count number of type1(my data set has 2 categories and types(type1 and tupe2) but approximately all of my train data are type1. So I cant oversample.
Previously I used to split train test datasets with my written code. In that code 0.8 of all type1 data and 0.8 of all type2 data were in the train dataset.
How I can use this method with train_test_split function or other spliting methods in sklearn?
*I should just use sklearn or my own written methods.
You're looking for stratification. Why?
There's a parameter stratify in method train_test_split to which you can give the labels list e.g. :
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
stratify=y,
test_size=0.2)
There's also StratifiedShuffleSplit.
It seems like we both had similar issues here. Unfortunately, imbalanced-learn isn't always what you need and scikit does not offer the functionality you want. You will want to implement your own code.
This is what I came up for my application. Note that I have not had extensive time to debug it but I believe it works from the testing I have done. Hope it helps:
def equal_sampler(classes, data, target, test_frac):
# Find the least frequent class and its fraction of the total
_, count = np.unique(target, return_counts=True)
fraction_of_total = min(count) / len(target)
# split further into train and test
train_frac = (1-test_frac)*fraction_of_total
test_frac = test_frac*fraction_of_total
# initialize index arrays and find length of train and test
train=[]
train_len = int(train_frac * data.shape[0])
test=[]
test_len = int(test_frac* data.shape[0])
# add values to train, drop them from the index and proceed to add to test
for i in classes:
indeces = list(target[target ==i].index.copy())
train_temp = np.random.choice(indeces, train_len, replace=False)
for val in train_temp:
train.append(val)
indeces.remove(val)
test_temp = np.random.choice(indeces, test_len, replace=False)
for val in test_temp:
test.append(val)
# X_train, y_train, X_test, y_test
return data.loc[train], target[train], data.loc[test], target[test]
For the input, classes expects a list of possible values, data expects the dataframe columns used for prediction, target expects the target column.
Take care that the algorithm may not be extremely efficient, due to the triple for-loop(list.remove takes linear time). Despite that, it should be reasonably fast.
You may also look into stratified shuffle split as follows:
# We use a utility to generate artificial classification data.
from sklearn.datasets import make_classification
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline
X, y = make_classification(n_samples=100, n_informative=10, n_classes=2)
sss = StratifiedShuffleSplit(n_splits=5, test_size=0.5, random_state=0)
for train_index, test_index in sss.split(X, y):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = make_pipeline(StandardScaler(), SVC(gamma='auto'))
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
I want to compare results of my regression analysis with encoded categorical variables with two baseline models where the baseline predictions are specified as the average or min values of the groups. I've chosen Rsquare and MAE for comparison. Below is a simplified example of my code for illustration. It works in that it gives me an output which I think achieves my goal. Is this the correct and/or best way to do this?
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
df = pd.DataFrame([['a1','c1',10],
['a1','c2',15],
['a1','c3',20],
['a1','c1',15],
['a2','c2',20],
['a2','c3',15],
['a2','c1',20],
['a2','c2',15],
['a3','c3',20],
['a3','c3',15],
['a3','c3',15],
['a3','c3',20]], columns=['aid','cid','T'])
df_dummies = pd.get_dummies(df, columns=['aid','cid'],prefix_sep='',prefix='')
df_dummies
X = df_dummies
y = df_dummies['T']
# train test split 80-20
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
regr = LinearRegression()
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
print('R-squared:', metrics.r2_score(y_test, y_pred))
print('MAE:', metrics.mean_absolute_error(y_test, y_pred))
# Baseline model with group average as prediction
y_pred = df.groupby('aid').agg({'T': ['mean']})
print('R-squared:', metrics.r2_score(y_test, y_pred))
print('MAE:', metrics.mean_absolute_error(y_test, y_pred))
# Baseline model with group min as prediction
y_pred = df.groupby('aid').agg({'T': ['min']})
print('R-squared:', metrics.r2_score(y_test, y_pred))
print('MAE:', metrics.mean_absolute_error(y_test, y_pred))
First of all, I would rename y_predall the time to not get confused.
In general:
y_pred = df.groupby('aid').agg({'T': ['mean']})
will give you the mean of the column 'aid'.
And y_pred = df.groupby('aid').agg({'T': ['min']}) will give you the minimum.
There is an interessting package for you: https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html
This is helpful for dummy regression and has also other methods inside.
In your case it should work like this:
df_dummies = pd.get_dummies(df, columns=['aid','cid'],prefix_sep='',prefix='')
X = df_dummies
y = df['T']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
dummy_min=DummyRegressor(strategy='constant',constant=min_value)
dummy_min.fit(X_train,y_train)
I found and successfully tested following script that applies Pipeline and GridSearchCV to classifier selection. The script outputs the best classifier and its accuracy.
import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn import datasets
iris = datasets.load_iris()
X_train = iris.data
y_train = iris.target
X_test = iris.data[:10] # Augmenting test data
y_test = iris.target[:10] # Augmenting test data
#Create a pipeline
pipe = Pipeline([('classifier', LogisticRegression())])
# Create space of candidate learning algorithms and their hyperparameters
search_space = [{'classifier': [LogisticRegression()],
'classifier__penalty': ['l1', 'l2'],
'classifier__C': np.logspace(0, 4, 10)},
{'classifier': [RandomForestClassifier()],
'classifier__n_estimators': [10, 100, 1000],
'classifier__max_features': [1, 2, 3]}]
# Create grid search
clf = GridSearchCV(pipe, search_space, cv=5, verbose=0)
# Fit grid search
best_model = clf.fit(X_train, y_train)
print('Best training accuracy: %.3f' % best_model.best_score_)
print('Best estimator:', best_model.best_estimator_.get_params()['classifier'])
# Predict on test data with best params
y_pred = best_model.predict(X_test)
# Test data accuracy of model with best params
print(classification_report(y_test, y_pred, digits=4))
print('Test set accuracy score for best params: %.3f' % accuracy_score(y_test, y_pred))
from sklearn.metrics import precision_recall_fscore_support
print(precision_recall_fscore_support(y_test, y_pred,
average='weighted'))
How can I adjust the script so that it not only outputs the best classifier, which is LogReg in our example, but also the best selected among the other classifiers? Above, I like to see the output from RandomForestClassifier(), too.
Ideal is a solution where the best classifier for each algorithm (LogReg, RandomForest,..) is shown and where each of those best classifiers is sorted into a table. The first column or index should be the model and precision_recall_fscore_support values are in rows on the right. The table should then be sorted by F-score.
PS: Though the script works, I'm yet unsure what the function of LogisticRegression() in the Pipeline is, as it's defined in the search space later.
Solution (simplified):
from sklearn import datasets
iris = datasets.load_iris()
X_train = iris.data
y_train = iris.target
X_test = iris.data[:10]
y_test = iris.target[:10]
seed=1
models = [
'RFC',
'logisticRegression'
]
clfs = [
RandomForestClassifier(random_state=seed,n_jobs=-1),
LogisticRegression()
]
params = {
models[0]:{'n_estimators':[100]},
models[1]: {'C':[1000]}
}
for name, estimator in zip(models,clfs):
print(name)
clf = GridSearchCV(estimator, params[name], scoring='accuracy', refit='True', n_jobs=-1, cv=5)
clf.fit(X_train, y_train)
print("best params: " + str(clf.best_params_))
print("best scores: " + str(clf.best_score_))
y_pred = clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print("Accuracy: {:.4%}".format(acc))
print(classification_report(y_test, y_pred, digits=4))
If I understood correctly, this should work fine.
import pandas as pd
import numpy as np
df = pd.DataFrame(list(best_model.cv_results_['params']))
ranking = best_model.cv_results_['rank_test_score']
# The sorting is done based on the test_score of the models.
sorting = np.argsort(best_model.cv_results_['rank_test_score'])
# Sort the lines based on the ranking of the models
df_final = df.iloc[sorting]
# The first line contains the best model and its parameters
df_final.to_csv('sorted_table.csv')
# OR to avoid the index in the writting
df_final.to_csv('sorted_table2.csv',index=False)
Results:
However, in this case, the ordering is not done based on the F values. To do so use this. Define in the GridSearch the scoring attribute to f1_weighted and repeat my code.
Example:
...
clf = GridSearchCV(pipe, search_space, cv=5, verbose=0,scoring='f1_weighted')
best_model = clf.fit(X_train, y_train)
df = pd.DataFrame(list(best_model.cv_results_['params']))
ranking = best_model.cv_results_['rank_test_score']
# The sorting is done based on the F values of the models.
sorting = np.argsort(best_model.cv_results_['rank_test_score'])
# Sort the lines based on the ranking of the models
df_final = df.iloc[sorting]
df_final.to_csv('F_sorted_table.csv')
Results:
I have been using SVR to predict the value of a time series. My dataset is split into two which is train and test and using SVR with RBF kernel to predict the test dataset. While SVR has been perfectly modeled the train data set but always predict the average value of the test dataset.
Have been trying StandardScaller, Normalization and so on but always failed.
here is my code
X = np.array(x).reshape(-1,1)
Y = np.array(y).reshape(-1,1)
sc_y = StandardScaler()
Y = sc_y.fit_transform(Y)
Y = np.array(Y).ravel()
# Fit regression model
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.4, random_state=0, shuffle=False)
from sklearn.model_selection import cross_val_score
svr_rbf = SVR(kernel='rbf', C=10, gamma=9.9999999999999995e-08, epsilon=0.1)
print(X_train.shape)
svr_rbf.fit(X_train, Y_train)
y_rbf = svr_rbf.predict(X_train)
y_rbf1 = svr_rbf.predict(X_test)
and here is my result
The prediction is at the end where a constant value is shown.
Do you know what should I do to make the prediction better?