I have a use case where I am running some modeling code on each executor and want to store the result in s3/hdfs immediately before waiting for all the executors to finish the tasks.
The dataframe write API works in the same fashion you intend to use here, if you write the dataframe into hdfs, the executors will independently write the data into files rather bringing them all to the driver and then performing the write operation.
Refer this link to further read this topic.
Related
I am trying to use Spark for processing csv file on cluster. I want to understand if I need to explicitly read the file on each of the worker nodes to do the processing in parallel or will the driver node read the file and distribute the data across cluster for processing internally? (I am working with Spark 2.3.2 and Python)
I know RDD's can be parallelized using SparkContext.parallelize() but what in case of Spark DataFrames?
if __name__=="__main__":
spark=SparkSession.builder.appName('myApp').getOrCreate()
df=spark.read.csv('dataFile.csv',header=True)
df=df.filter("date>'2010-12-01' AND date<='2010-12-02' AND town=='Madrid'")
So if I am running the above code on cluster, will the entire operation be done by driver node or will it distribute df across cluster and each worker perform processing on its data partition?
To be strict, if you run the above code it will not read or process any data. DataFrames are basically an abstraction implemented on top of RDDs. As with RDDs, you have to distinguish transformations and actions. As your code only consists of one filter(...) transformation, noting will happen in terms of readind or processing of data. Spark will only create the DataFrame which is an execution plan. You have to perform an action like count() or write.csv(...) to actually trigger processing of the CSV file.
If you do so, the data will then be read and processed by 1..n worker nodes. It is never read or processed by the driver node. How many or your worker nodes are actually involved depends -- in your code -- on the number of partitions of your source file. Each partition of the source file can be processed in parallel by one worker node. In your example it is probably a single CSV file, so when you call df.rdd.getNumPartitions() after you read the file, it should return 1. Hence, only one worker node will read the data. The same is true if you check the number of partitions after your filter(...) operation.
Here are two ways of how the processing of your single CSV file can be parallelized:
You can manually repartition your source DataFrame by calling df.repartition(n) with n the number of partitions you want to have. But -- and this is a significant but -- this means that all data is potentially send over the network (aka shuffle)!
You perform aggregations or joins on the DataFrame. These operations have to trigger a shuffle. Spark then uses the number of partitions specified in spark.sql.shuffle.partitions(default: 200) to partition the resulting DataFrame.
I would like to use Spark structured streaming to watch a drop location that exists on the driver only. I do this with
val trackerData = spark.readStream.text(sourcePath)
After that I would like to parse, filter, and map incoming data and write it out to elastic.
This works well except that it does only work when spark.master is set to e.g. local[*]. When set to yarn, no files get found even when deployment mode is set to client.
I thought that reading data in from local driver node is achieved by setting deployment to client and doing the actual processing and writing within the Spark cluster.
How could I improve my code to use driver for reading in and cluster for processing and writing?
What you want is possible, but not recommended in Spark Structured Streaming in particular and in Apache Spark in general.
The main motivation of Apache Spark is to bring computation to the data not the opposite as Spark is to process petabytes of data that a single JVM (of a driver) would not be able to handle.
The driver's "job" (no pun intended) is to convert a RDD lineage (= a DAG of transformations) to tasks that know how to load a data. Tasks are executed on Spark executors (in most cases) and that's where data processing happens.
There are some ways to make the reading part on driver and processing on executors and among them the most "lucrative" would be to use broadcast variables.
Broadcast variables allow the programmer to keep a read-only variable cached on each machine rather than shipping a copy of it with tasks. They can be used, for example, to give every node a copy of a large input dataset in an efficient manner. Spark also attempts to distribute broadcast variables using efficient broadcast algorithms to reduce communication cost.
One idea that came to my mind is that you could "hack" Spark "Streams" and write your own streaming sink that would do collect or whatever. That could make the processing local.
I have 3 folders containing csv files in 3 different schemas in HDFS.All 3 files are huge ( several GBs). I want to read the files in parallel and process the rows in them in parallel. How do I accomplish this is on a yarn cluster using Spark?
Assuming, you are using Scala, create a parallel collection of your files using the hdfs client and the .par convenience method, then map the result onto spark.read and call an action -- voilĂ , if you have enough resources in the cluster, you'll have all files being read in parallel. At worst, Spark's job scheduler will shuffle the execution of certain tasks around to minimize wait times.
If you don't have enough workers/executors, you won't gain much, but if you do, you can fully exploit those resources, without having to wait for each job to finish, before you send out the next.
Due to lazy evaluation this may happen anyway, depending on how you work with the data -- but you can force parallel execution of several actions/jobs by using parallelism or Futures.
If you want to process all the data separately, you can always write 3 spark jobs to process them separately and execute them in the cluster in parallel. There are several way to run all 3 jobs in parallel. The most straight forward is to have a oozie workflow with 3 parallel sub-workflow.
Now if you want to process 3 datasets in the same job, you need to read them sequentially. After that you can process the datasets. When you process multiple datasets using spark operation, Spark parallelize them for you. The closure of the operation will be shipped to the executors and all will work in parallel.
What do you mean under "read the files in parallel and process the rows in them in parallel"? Spark deals with your data in parallel itself according to your application configuration (num-executors, executor-cores...).
If you mean 'start reading files at the same time and process simultaneously', I'm pretty sure, you can't explicitly get it. It would demand some capabilities to affect the DAG of your application, but as I know, the only way to do it is implicitly, when building your data process as a sequence of transformations/actions.
Spark is also designed in such way, that it can execute several stages simultaneously "out of box", if your resource allocation allows.
I had encountered similar situation recently.
You can pass a list of CSVs with their paths to spark read api like spark.read.json(input_file_paths) (source). This will load all the files in a single dataframe and all the transformations eventually performed will be done in parallel by multiple executors depending on your spark config.
I understood the automated mapping that exists between a Kafka Partition and a Spark RDD partition and ultimately Spark Task. However in order to properly Size My Executor (in number of Core) and therefore ultimately my node and cluster, I need to understand something that seems to be glossed over in the documentations.
In Spark-Streaming how does exactly work the data consumption vs data processing vs task allocation, in other words:
Does a corresponding Spark task to a Kafka partition both read
and process the data altogether ?
The rational behind this question is that in the previous API, that
is, the receiver based, a TASK was dedicated for receiving the data,
meaning a number tasks slot of your executors were reserved for data
ingestion and the other were there for processing. This had an
impact on how you size your executor in term of cores.
Take for example the advise on how to launch spark-streaming with
--master local. Everyone would tell that in the case of spark streaming,
one should put local[2] minimum, because one of the
core, will be dedicated to running the long receiving task that never
ends, and the other core will do the data processing.
So if the answer is that in this case, the task does both the reading
and the processing at once, then the question that follows, is that
really smart, i mean, this sounds like asynchronous. We want to be
able to fetch while we process so on the next processing the data is
already there. However if there only one core or more precisely to
both read the data and process them, how can both be done in
parallel, and how does that make things faster in general.
My original understand was that, things would have remain somehow the
same in the sense that, a task would be launch to read but that the
processing would be done in another task. That would mean that, if
the processing task is not done yet, we can still keep reading, until
a certain memory limit.
Can someone outline with clarity what is exactly going on here ?
EDIT1
We don't even have to have this memory limit control. Just the mere fact of being able to fetch while the processing is going on and stopping right there. In other words, the two process should be asynchronous and the limit is simply to be one step ahead. To me if somehow this is not happening, i find it extremely strange that Spark would implement something that break performance as such.
Does a corresponding Spark task to a Kafka partition both read and
process the data altogether ?
The relationship is very close to what you describe, if by talking about a task we're referring to the part of the graph that reads from kafka up until a shuffle operation. The flow of execution is as follows:
Driver reads offsets from all kafka topics and partitions
Driver assigns each executor a topic and partition to be read and processed.
Unless there is a shuffle boundary operation, it is likely that Spark will optimize the entire execution of the partition on the same executor.
This means that a single executor will read a given TopicPartition and process the entire execution graph on it, unless we need to shuffle. Since a Kafka partition maps to a partition inside the RDD, we get that guarantee.
Structured Streaming takes this even further. In Structured Streaming, there is stickiness between the TopicPartition and the worker/executor. Meaning, if a given worker was assigned a TopicPartition it is likely to continue processing it for the entire lifetime of the application.
I am new to distributed computing, and I'm trying to run Kmeans on EC2 using Spark's mllib kmeans. As I was reading through the tutorial I found the following code snippet on
http://spark.apache.org/docs/latest/mllib-clustering.html#k-means
I am having trouble understanding how this code runs inside the cluster. Specifically, I'm having trouble understanding the following:
After submitting the code to master node, how does spark know how to parallelize the job? Because there seem to be no part of the code that deals with this.
Is the code copied to all nodes and executed on each node? Does the master node do computation?
How do node communitate the partial result of each iteration? Is this dealt inside the kmeans.train code, or is the spark core takes care of it automatically?
Spark divides data to many partitions. For example, if you read a file from HDFS, then partitions should be equal to partitioning of data in HDFS. You can manually specify number of partitions by doing repartition(numberOfPartitions). Each partition can be processed on separate node, thread, etc. Sometimes data are partitioned by i.e. HashPartitioner, which looks on hash of the data.
Number of partitions and size of partitions generally tells you if data is distributed/parallelized correctly. Creating partitions of data is hidden in RDD.getPartitions methods.
Resource scheduling depends on cluster manager. We can post very long post about them ;) I think that in this question, the partitioning is the most important. If not, please inform me, I will edit answer.
Spark serializes clusures, that are given as arguments to transformations and actions. Spark creates DAG, which is sent to all executors and executors execute this DAG on the data - it launches closures on each partition.
Currently after each iteration, data is returned to the driver and then next job is scheduled. In Drizzle project, AMPLab/RISELab is creating possibility to create multiple jobs on one time, so data won't be sent to the driver. It will create DAG one time and schedules i.e. job with 10 iterations. Shuffle between them will be limited / will not exists at all. Currently DAG is created in each iteration and job in scheduled to executors
There is very helpful presentation about resource scheduling in Spark and Spark Drizzle.