Briefly, I put in place a data input pipline using tensorflow Dataset API. Then, I implemented a CNN model for classification using keras, which i converted to an estimator. I feeded my estimator Train and Eval Specs with my input_fn providing input data for training and evaluation. And as final step I launched the model training with tf.estimator.train_and_evaluate
def my_input_fn(tfrecords_path):
dataset = (...)
return batch_fbanks, batch_labels
def build_model():
model = tf.keras.models.Sequential()
model.add(...)
model.compile(...)
return model
model = build_model()
run_config=tf.estimator.RunConfig(model_dir,save_summary_steps=100,save_checkpoints_steps=1000)
estimator = tf.keras.estimator.model_to_estimator(model,config=run_config)
def serving_input_receiver_fn():
inputs = {'Conv1_input': tf.compat.v1.placeholder(shape=[None, 11,120,1], dtype=tf.float32)}
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
exporter = tf.estimator.BestExporter(serving_input_receiver_fn, name="best_exporter", exports_to_keep=5)
train_spec_dnn = tf.estimator.TrainSpec(input_fn = lambda: my_input_fn(train_data_path),hooks=[hook])
eval_spec_dnn = tf.estimator.EvalSpec(input_fn = lambda: my_eval_input_fn(eval_data_path),exporters=exporter,start_delay_secs=0,throttle_secs=15)
tf.estimator.train_and_evaluate(estimator, train_spec_dnn, eval_spec_dnn)
I save the 5 best checkpoints using the tf.estimator.BestExporter as shown above. Once i finished training, i want to reload the best model and convert it to an estimator to re-evaluate the model and predict on new dataset. However my issue is in restoring the checkpoint to an estimator. I tried several solutions but each time i don't get the estimator object I need to run its evaluate and predict methods.
Just to specify more, each of the best checkpoints directory is organised as follow:
./
variables/
variables.data-00000-of-00002
variables.data-00001-of-00002
variables.index
saved_model.pb
So the question is how can I get an estimator object from the best checkpoint so that i can use it to evaluate my model and predict on new data?
Note : I found some proposed solutions relying on TensorFlow v1 features which can not solve my problem because i work with TF v2.
Thanks a lot, any help is appreciated.
You can use the class below created from tf.estimator.BestExporter
What it does is, except for saving the best model (.pb files and etc) it will also save
the best-exported model checkpoint on a different folder.
Below is the class:
import shutil, glob, os
# import tensorflow.logging as logging
## the path where all the checkpoint reside
BEST_CHECKPOINTS_PATH_FROM = 'PATH TO ALL CHECKPOINT FILES'
## the path it will save the best exporter checkpoint files
BEST_CHECKPOINTS_PATH_TO = 'PATH TO BEST EXPORTER CHECKPOINT FILES TO BE SAVE'
class BestCheckpointsExporter(tf.estimator.BestExporter):
def export(self, estimator, export_path, checkpoint_path, eval_result,is_the_final_export):
if self._best_eval_result is None or \
self._compare_fn(self._best_eval_result, eval_result):
#print('Exporting a better model ({} instead of {})...'.format(eval_result, self._best_eval_result))
for name in glob.glob(checkpoint_path + '.*'):
print(name)
print(os.path.join(BEST_CHECKPOINTS_PATH_TO, os.path.basename(name)))
shutil.copy(name, os.path.join(BEST_CHECKPOINTS_PATH_TO, os.path.basename(name)))
# also save the text file used by the estimator api to find the best checkpoint
with open(os.path.join(BEST_CHECKPOINTS_PATH_TO, "checkpoint"), 'w') as f:
f.write("model_checkpoint_path: \"{}\"".format(os.path.basename(checkpoint_path)))
self._best_eval_result = eval_result
else:
print('Keeping the current best model ({} instead of {}).'.format(self._best_eval_result, eval_result))
Example Usage of the Class
You will just replace the exporter by calling the class and pass the serving_input_receiver_fn.
def serving_input_receiver_fn():
inputs = {'my_dense_input': tf.compat.v1.placeholder(shape=[None, 4], dtype=tf.float32)}
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
exporter = BestCheckpointsExporter(serving_input_receiver_fn=serving_input_receiver_fn)
train_spec_dnn = tf.estimator.TrainSpec(input_fn = input_fn, max_steps=5)
eval_spec_dnn = tf.estimator.EvalSpec(input_fn=input_fn,exporters=exporter,start_delay_secs=0,throttle_secs=15)
(x, y) = tf.estimator.train_and_evaluate(keras_estimator, train_spec_dnn, eval_spec_dnn)
At this point, It will save the best-exported model checkpoint files in the folder you have specified.
For loading the checkpoint files you need to do the following steps:
Step 1: Rebuild your model instance
def build_model():
model = tf.keras.models.Sequential()
model.add(...)
model.compile(...)
return model
model = build_model()
Step 2: use the model load_weights API
Reference URL: https://www.tensorflow.org/tutorials/keras/save_and_load
ck_path = tf.train.latest_checkpoint('PATH TO BEST EXPORTER CHECKPOINT FILES')
model.load_weights(ck_path)
## From there you will be able to call the predict & evaluate the functionality of the trained model
##PREDICT
prediction = model.predict(x)
##EVALUATE
for features_batch, labels_batch in input_fn().take(1):
model.evaluate(features_batch, labels_batch)
Note: All of these have been simulated on google colab.
Related
I would like to save the best model in Keras based on auc and I have this code:
def MyMetric(yTrue, yPred):
auc = tf.metrics.auc(yTrue, yPred)
return auc
best_model = [ModelCheckpoint(filepath='best_model.h5', monitor='MyMetric', save_best_only=True)]
train_history = model.fit([train_x],
[train_y], batch_size=batch_size, epochs=epochs, validation_split=0.05,
callbacks=best_model, verbose = 2)
SO my model runs nut I get this warning:
RuntimeWarning: Can save best model only with MyMetric available, skipping.
'skipping.' % (self.monitor), RuntimeWarning)
It would be great if any can tell me this is the right way to do it and if not what should I do?
You have to pass the Metric you want to monitor to model.compile.
https://keras.io/metrics/#custom-metrics
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[MyMetric])
Also, tf.metrics.auc returns a tuple containing the tensor and update_op. Keras expects the custom metric function to return only a tensor.
def MyMetric(yTrue, yPred):
import tensorflow as tf
auc = tf.metrics.auc(yTrue, yPred)
return auc[0]
After this step, you will get errors about uninitialized values. Please see these threads:
https://github.com/keras-team/keras/issues/3230
How to compute Receiving Operating Characteristic (ROC) and AUC in keras?
You can define a custom metric that calls tensorflow to compute AUROC in the following way:
def as_keras_metric(method):
import functools
from keras import backend as K
import tensorflow as tf
#functools.wraps(method)
def wrapper(self, args, **kwargs):
""" Wrapper for turning tensorflow metrics into keras metrics """
value, update_op = method(self, args, **kwargs)
K.get_session().run(tf.local_variables_initializer())
with tf.control_dependencies([update_op]):
value = tf.identity(value)
return value
return wrapper
#as_keras_metric
def AUROC(y_true, y_pred, curve='ROC'):
return tf.metrics.auc(y_true, y_pred, curve=curve)
You then need to compile your model with this metric:
model.compile(loss=train_loss, optimizer='adam', metrics=['accuracy',AUROC])
Finally: Checkpoint the model in the following way:
model_checkpoint = keras.callbacks.ModelCheckpoint(path_to_save_model, monitor='val_AUROC',
verbose=0, save_best_only=True,
save_weights_only=False, mode='auto', period=1)
Be careful though: I believe the Validation AUROC is calculated batch wise and averaged; so might give some errors with checkpointing. A good idea might be to verify after model training finishes that the AUROC of the predictions of the trained model (computed with sklearn.metrics) matches what Tensorflow reports while training and checkpointing
Assuming you use TensorBoard, then you have a historical record—in the form of tfevents files—of all your metric calculations, for all your epochs; then a tf.keras.callbacks.Callback is what you want.
I use tf.keras.callbacks.ModelCheckpoint with save_freq: 'epoch' to save—as an h5 file or tf file—the weights for each epoch.
To avoid filling the hard-drive with model files, write a new Callback—or extend the ModelCheckpoint class's—on_epoch_end implementation:
def on_epoch_end(self, epoch, logs=None):
super(DropWorseModels, self).on_epoch_end(epoch, logs)
if epoch < self._keep_best:
return
model_files = frozenset(
filter(lambda filename: path.splitext(filename)[1] == SAVE_FORMAT_WITH_SEP,
listdir(self._model_dir)))
if len(model_files) < self._keep_best:
return
tf_events_logs = tuple(islice(log_parser(tfevents=path.join(self._log_dir,
self._split),
tag=self.monitor),
0,
self._keep_best))
keep_models = frozenset(map(self._filename.format,
map(itemgetter(0), tf_events_logs)))
if len(keep_models) < self._keep_best:
return
it_consumes(map(lambda filename: remove(path.join(self._model_dir, filename)),
model_files - keep_models))
Appendix (imports and utility function implementations):
from itertools import islice
from operator import itemgetter
from os import path, listdir, remove
from collections import deque
import tensorflow as tf
from tensorflow.core.util import event_pb2
def log_parser(tfevents, tag):
values = []
for record in tf.data.TFRecordDataset(tfevents):
event = event_pb2.Event.FromString(tf.get_static_value(record))
if event.HasField('summary'):
value = event.summary.value.pop(0)
if value.tag == tag:
values.append(value.simple_value)
return tuple(sorted(enumerate(values), key=itemgetter(1), reverse=True))
it_consumes = lambda it, n=None: deque(it, maxlen=0) if n is None \
else next(islice(it, n, n), None)
SAVE_FORMAT = 'h5'
SAVE_FORMAT_WITH_SEP = '{}{}'.format(path.extsep, SAVE_FORMAT)
For completeness, the rest of the class:
class DropWorseModels(tf.keras.callbacks.Callback):
"""
Designed around making `save_best_only` work for arbitrary metrics
and thresholds between metrics
"""
def __init__(self, model_dir, monitor, log_dir, keep_best=2, split='validation'):
"""
Args:
model_dir: directory to save weights. Files will have format
'{model_dir}/{epoch:04d}.h5'.
split: dataset split to analyse, e.g., one of 'train', 'test', 'validation'
monitor: quantity to monitor.
log_dir: the path of the directory where to save the log files to be
parsed by TensorBoard.
keep_best: number of models to keep, sorted by monitor value
"""
super(DropWorseModels, self).__init__()
self._model_dir = model_dir
self._split = split
self._filename = 'model-{:04d}' + SAVE_FORMAT_WITH_SEP
self._log_dir = log_dir
self._keep_best = keep_best
self.monitor = monitor
This has the added advantage of being able to save and delete multiple model files in a single Callback. You can easily extend with different thresholding support, e.g., to keep all model files with an AUC in threshold OR TP, FP, TN, FN within threshold.
Inspired by tf.keras.Model subclassing I created custom model.
I can train it and get successfull results, but I can't save it.
I use python3.6 with tensorflow v1.10 (or v1.9)
Minimal complete code example here:
import tensorflow as tf
from tensorflow.keras.datasets import mnist
class Classifier(tf.keras.Model):
def __init__(self):
super().__init__(name="custom_model")
self.batch_norm1 = tf.layers.BatchNormalization()
self.conv1 = tf.layers.Conv2D(32, (7, 7))
self.pool1 = tf.layers.MaxPooling2D((2, 2), (2, 2))
self.batch_norm2 = tf.layers.BatchNormalization()
self.conv2 = tf.layers.Conv2D(64, (5, 5))
self.pool2 = tf.layers.MaxPooling2D((2, 2), (2, 2))
def call(self, inputs, training=None, mask=None):
x = self.batch_norm1(inputs)
x = self.conv1(x)
x = tf.nn.relu(x)
x = self.pool1(x)
x = self.batch_norm2(x)
x = self.conv2(x)
x = tf.nn.relu(x)
x = self.pool2(x)
return x
if __name__ == '__main__':
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(*x_train.shape, 1)[:1000]
y_train = y_train.reshape(*y_train.shape, 1)[:1000]
x_test = x_test.reshape(*x_test.shape, 1)
y_test = y_test.reshape(*y_test.shape, 1)
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)
model = Classifier()
inputs = tf.keras.Input((28, 28, 1))
x = model(inputs)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(10, activation="sigmoid")(x)
model = tf.keras.Model(inputs=inputs, outputs=x)
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
model.fit(x_train, y_train, epochs=1, shuffle=True)
model.save("./my_model")
Error message:
1000/1000 [==============================] - 1s 1ms/step - loss: 4.6037 - acc: 0.7025
Traceback (most recent call last):
File "/home/user/Data/test/python/mnist/mnist_run.py", line 62, in <module>
model.save("./my_model")
File "/home/user/miniconda3/envs/ml3.6/lib/python3.6/site-packages/tensorflow/python/keras/engine/network.py", line 1278, in save
save_model(self, filepath, overwrite, include_optimizer)
File "/home/user/miniconda3/envs/ml3.6/lib/python3.6/site-packages/tensorflow/python/keras/engine/saving.py", line 101, in save_model
'config': model.get_config()
File "/home/user/miniconda3/envs/ml3.6/lib/python3.6/site-packages/tensorflow/python/keras/engine/network.py", line 1049, in get_config
layer_config = layer.get_config()
File "/home/user/miniconda3/envs/ml3.6/lib/python3.6/site-packages/tensorflow/python/keras/engine/network.py", line 1028, in get_config
raise NotImplementedError
NotImplementedError
Process finished with exit code 1
I looked into the error line and found out that get_config method checks self._is_graph_network
Do anybody deal with this problem?
Thanks!
Update 1:
On the keras 2.2.2 (not tf.keras)
Found comment (for model saving)
file: keras/engine/network.py
Function: get_config
# Subclassed networks are not serializable
# (unless serialization is implemented by
# the author of the subclassed network).
So, obviously it won't work...
I wonder, why don't they point it out in the documentation (Like: "Use subclassing without ability to save!")
Update 2:
Found in keras documentation:
In subclassed models, the model's topology is defined as Python code
(rather than as a static graph of layers). That means the model's
topology cannot be inspected or serialized. As a result, the following
methods and attributes are not available for subclassed models:
model.inputs and model.outputs.
model.to_yaml() and model.to_json()
model.get_config() and model.save().
So, there is no way to save model by using subclassing.
It's possible to only use Model.save_weights()
TensorFlow 2.2
Thanks for #cal for noticing me that the new TensorFlow has supported saving the custom models!
By using model.save to save the whole model and by using load_model to restore previously stored subclassed model. The following code snippets describe how to implement them.
class ThreeLayerMLP(keras.Model):
def __init__(self, name=None):
super(ThreeLayerMLP, self).__init__(name=name)
self.dense_1 = layers.Dense(64, activation='relu', name='dense_1')
self.dense_2 = layers.Dense(64, activation='relu', name='dense_2')
self.pred_layer = layers.Dense(10, name='predictions')
def call(self, inputs):
x = self.dense_1(inputs)
x = self.dense_2(x)
return self.pred_layer(x)
def get_model():
return ThreeLayerMLP(name='3_layer_mlp')
model = get_model()
# Save the model
model.save('path_to_my_model',save_format='tf')
# Recreate the exact same model purely from the file
new_model = keras.models.load_model('path_to_my_model')
See: Save and serialize models with Keras - Part II: Saving and Loading of Subclassed Models
TensorFlow 2.0
TL;DR:
do not use model.save() for custom subclass keras model;
use save_weights() and load_weights() instead.
With the help of the Tensorflow Team, it turns out the best practice of saving a Custom Sub-Class Keras Model is to save its weights and load it back when needed.
The reason that we can not simply save a Keras custom subclass model is that it contains custom codes, which can not be serialized safely. However, the weights can be saved/loaded when we have the same model structure and custom codes without any problem.
There has a great tutorial written by Francois Chollet who is the author of Keras, for how to save/load Sequential/Functional/Keras/Custom Sub-Class Models in Tensorflow 2.0 in Colab at here. In Saving Subclassed Models section, it said that:
Sequential models and Functional models are datastructures that represent a DAG of layers. As such, they can be safely serialized and deserialized.
A subclassed model differs in that it's not a datastructure, it's a
piece of code. The architecture of the model is defined via the body
of the call method. This means that the architecture of the model
cannot be safely serialized. To load a model, you'll need to have
access to the code that created it (the code of the model subclass).
Alternatively, you could be serializing this code as bytecode (e.g.
via pickling), but that's unsafe and generally not portable.
This will be fixed in an upcoming release according to the 1.13 pre-release patch notes:
Keras & Python API:
Subclassed Keras models can now be saved through tf.contrib.saved_model.save_keras_model.
EDIT:
It seems this is not quite as finished as the notes suggest. The docs for that function for v1.13 state:
Model limitations: - Sequential and functional models can always be saved. - Subclassed models can only be saved when serving_only=True. This is due to the current implementation copying the model in order to export the training and evaluation graphs. Because the topology of subclassed models cannot be determined, the subclassed models cannot be cloned. Subclassed models will be entirely exportable in the future.
Tensorflow 2.1 allows to save subclassed models with SavedModel format
From my beginning using Tensorflow, i was always a fan of Model Subclass, i feel this way of build models more pythonic and collaborative friendly. But saving the model was always a point of pain with this approach.
Recently i started to update my knowledge and reach to the following information that seems to be True for Tensorflow 2.1:
Subclassed Models
I found this
Second approach is by using model.save to save whole model and by
using load_model to restore previously stored subclassed model.
This last saves the model, the weight and other stuff into a SavedModel file
And by last the confirmation:
Saving custom objects:
If you are using the SavedModel format, you can
skip this section. The key difference between HDF5 and SavedModel is
that HDF5 uses object configs to save the model architecture, while
SavedModel saves the execution graph. Thus, SavedModels are able to
save custom objects like subclassed models and custom layers without
requiring the orginal code.
I tested this personally, and efectively, model.save() for subclassed models generate a SavedModel save. There is no more need for use model.save_weights() or related functions, they now are more for specific usecases.
This is suposed to be the end of this painful path for all of us interested in Model Subclassing.
I found a way to solve it. Create a new model and load the weights from the saved .h5 model. This way is not preferred, but it works with keras 2.2.4 and tensorflow 1.12.
class MyModel(keras.Model):
def __init__(self, inputs, *args, **kwargs):
outputs = func(inputs)
super(MyModel, self).__init__( inputs=inputs, outputs=outputs, *args, **kwargs)
def get_model():
return MyModel(inputs, *args, **kwargs)
model = get_model()
model.save(‘file_path.h5’)
model_new = get_model()
model_new.compile(optimizer=optimizer, loss=loss, metrics=metrics)
model_new.load_weights(‘file_path.h5’)
model_new.evaluate(x_test, y_test, **kwargs)
UPDATE: Jul 20
Recently I also tried to create my subclassed layers and model. Write your own get_config() function might be difficult. So I used model.save_weights(path_to_model_weights) and model.load_weights(path_to_model_weights). When you want to load the weights, remember to create the model with the same architecture than do model.load_weights(). See the tensorflow guide for more details.
Old Answer (Still correct)
Actually, tensorflow document said:
In order to save/load a model with custom-defined layers, or a subclassed model, you should overwrite the get_config and optionally from_config methods. Additionally, you should use register the custom object so that Keras is aware of it.
For example:
class Linear(keras.layers.Layer):
def __init__(self, units=32, **kwargs):
super(Linear, self).__init__(**kwargs)
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,), initializer="random_normal", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
def get_config(self):
config = super(Linear, self).get_config()
config.update({"units": self.units})
return config
layer = Linear(64)
config = layer.get_config()
print(config)
new_layer = Linear.from_config(config)
The output is:
{'name': 'linear_8', 'trainable': True, 'dtype': 'float32', 'units': 64}
You can play with this simple code. For example, in function "get_config()", remove config.update(), see what's going on. See this and this for more details. These are the Keras guide on tensorflow website.
use model.predict before tf.saved_model.save
Actually recreating the model with
keras.models.load_model('path_to_my_model')
didn't work for me
First we have to save_weights from the built model
model.save_weights('model_weights', save_format='tf')
Then
we have to initiate a new instance for the subclass Model then compile and train_on_batch with one record and load_weights of built model
loaded_model = ThreeLayerMLP(name='3_layer_mlp')
loaded_model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
loaded_model.train_on_batch(x_train[:1], y_train[:1])
loaded_model.load_weights('model_weights')
This work perfectly in TensorFlow==2.2.0
Quantitative analysis of Neural Networks needs load all variables first in
TensorFlow. So I import the SSDLite MobileNet v2 model's checkpoint and restore weights. But I can not get its weights or variables by using some functions, such as get_all_coolection_keys, get_collection. The code snippet as follows:
import tensorflow as tf
import numpy as np
model_dir = 'ssdlite_mobilenet_v2_coco_2018_05_09'
checkpoint = tf.train.get_checkpoint_state(model_dir)
input_checkpoint = checkpoint.model_checkpoint_path # ssdlite_mobilenet_v2_coco_2018_05_09/model.ckpt
sess = tf.Session()
tf.reset_default_graph()
saver = tf.train.import_meta_graph(input_checkpoint + '.meta')
graph = tf.get_default_graph()
saver.restore(sess, input_checkpoint)
# INFO:tensorflow:Restoring parameters from ssdlite_mobilenet_v2_coco_2018_05_09/model.ckpt
graph_collections_keys = graph.get_all_collection_keys()
print(graph_collections_keys) # []
hyperparameters = tf.get_collection('hyperparameters')
print(len(hyperparameters)) # 0
model_variables = tf.get_collection(tf.GraphKeys.MODEL_VARIABLES)
print(len(model_variables)) # 0
So, how to access a pretrained model's weights (names and values) in TensorFlow?
pal, you can't restore variable name, weights is as far as you go. Also in tensorflow or in your code in general , the only option you got for restoring is saver . It also depends what kind of data you wanna restore if it's .npy file then np.load will do.
Using the functional API, I specified a complex model. I reuse this model several times like specified:
def build_model():
# build a model
model = Model(..., name="complex_model")
return model
complex_model = build_model() # return a Keras model
input_a = Input(...)
input_b = Input(...)
inst_a = complex_model(input_a)
inst_b = complex_model(input_b)
merged = ... # merge inst_a, inst_b
output = Dense(..., name="last_dense")(merged)
model = Model(inputs=[input_a, input_b], outputs=output)
model.compile(...)
model.fit(..., callbacks=...) # see below for callbacks
I want to visualize the weights of some layers using TensorBoard. This can easily be done for the last_dense layer like
ks.callbacks.TensorBoard(..., embeddings_freq=1, embeddings_layer_names=["last_dense"])
But how can I access a layer that is inside the complex model?
Say I want to access a layer called first_dense, neither of the following works:
ks.callbacks.TensorBoard(..., embeddings_freq=1, embeddings_layer_names=["first_dense"]
ks.callbacks.TensorBoard(..., embeddings_freq=1, embeddings_layer_names=["complex_model/first_dense"]
Instead, it throws an
ValueError: No variables to save
Is it ever possible to access this layer and if yes, how?
In an attempt for transfer learning over inception-v3 with TF and PY3.5, I've tested two approaches:
1- retraining the last layer, as shown here: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/image_retraining
2- Apply linear SVM on top of inception-V3 bottlenecks as demonstrated here: https://www.kernix.com/blog/image-classification-with-a-pre-trained-deep-neural-network_p11
Expectedly, they should've had a similar runtime for classification phase, since the critical part - the bottlenecks extraction - is identical. In practice though, the retrained network is about 8X slower when running classification.
My questions is whether anyone has an idea for the reason of this.
Some code snippets:
SVM on top (the faster):
def getTensors():
graph_def = tf.GraphDef()
f = open('classify_image_graph_def.pb', 'rb')
graph_def.ParseFromString(f.read())
tensorBottleneck, tensorsResizedImage = tf.import_graph_def(graph_def, name='', return_elements=['pool_3/_reshape:0', 'Mul:0'])
return tensorBottleneck, tensorsResizedImage
def calc_bottlenecks(imgFile, tensorBottleneck, tensorsResizedImage):
""" - read, decode and resize to get <resizedImage> - """
bottleneckValues = sess.run(tensorBottleneck, {tensorsResizedImage : resizedImage})
return np.squeeze(bottleneckValues)
This takes about 0.5 sec on my (Windows) laptop while the SVM part takes no time.
Retraining last layer - (this is harder to summarize since longer code)
def loadGraph(pbFile):
with tf.gfile.FastGFile(pbFile, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
softmaxTensor = sess.graph.get_tensor_by_name('final_result:0')
def labelImage(imageFile, softmaxTensor):
with tf.Session() as sess:
input_layer_name = 'DecodeJpeg/contents:0'
predictions, = sess.run(softmax_tensor, {input_layer_name: image_data})
'pbFile' is the file saved be the retrainer, which supposed to have identical topology and weights excluding the classification layer, as 'classify_image_graph_def.pb'. This takes about 4sec to run (on my same laptop, without the loading).
Any idea for the performance gap?
Thanks!
Solved. The problem was in creating a new tf.Session() for every image. Storing the session when reading graph and using it made runtime back to expected.
def loadGraph(pbFile):
...
with tf.Session() as sess:
softmaxTensor = sess.graph.get_tensor_by_name('final_result:0')
sessToStore = sess
return softmaxTensor, sessToStore
def labelImage(imageFile, softmaxTensor, sessToStore):
input_layer_name = 'DecodeJpeg/contents:0'
predictions, = sessToStore.run(softmax_tensor, {input_layer_name: image_data})