I have random number generator
rand :: Int -> Int -> IO Int
rand low high = getStdRandom (randomR (low,high))
and a helper function to remove an element from a list
removeItem _ [] = []
removeItem x (y:ys) | x == y = removeItem x ys
| otherwise = y : removeItem x ys
I want to shuffle a given list by randomly picking an item from the list, removing it and adding it to the front of the list. I tried
shuffleList :: [a] -> IO [a]
shuffleList [] = []
shuffleList l = do
y <- rand 0 (length l)
return( y:(shuffleList (removeItem y l) ) )
But can't get it to work. I get
hw05.hs:25:33: error:
* Couldn't match expected type `[Int]' with actual type `IO [Int]'
* In the second argument of `(:)', namely
....
Any idea ?
Thanks!
Since shuffleList :: [a] -> IO [a], we have shuffleList (xs :: [a]) :: IO [a].
Obviously, we can't cons (:) :: a -> [a] -> [a] an a element onto an IO [a] value, but instead we want to cons it onto the list [a], the computation of which that IO [a] value describes:
do
y <- rand 0 (length l)
-- return ( y : (shuffleList (removeItem y l) ) )
shuffled <- shuffleList (removeItem y l)
return y : shuffled
In do notation, values to the right of <- have types M a, M b, etc., for some monad M (here, IO), and values to the left of <- have the corresponding types a, b, etc..
The x :: a in x <- mx gets bound to the pure value of type a produced / computed by the M-type computation which the value mx :: M a denotes, when that computation is actually performed, as a part of the combined computation represented by the whole do block, when that combined computation is performed as a whole.
And if e.g. the next line in that do block is y <- foo x, it means that a pure function foo :: a -> M b is applied to x and the result is calculated which is a value of type M b, denoting an M-type computation which then runs and produces / computes a pure value of type b to which the name y is then bound.
The essence of Monad is thus this slicing of the pure inside / between the (potentially) impure, it is these two timelines going on of the pure calculations and the potentially impure computations, with the pure world safely separated and isolated from the impurities of the real world. Or seen from the other side, the pure code being run by the real impure code interacting with the real world (in case M is IO). Which is what computer programs must do, after all.
Your removeItem is wrong. You should pick and remove items positionally, i.e. by index, not by value; and in any case not remove more than one item after having picked one item from the list.
The y in y <- rand 0 (length l) is indeed an index. Treat it as such. Rename it to i, too, as a simple mnemonic.
Generally, with Haskell it works better to maximize the amount of functional code at the expense of non-functional (IO or randomness-related) code.
In your situation, your “maximum” functional component is not removeItem but rather a version of shuffleList that takes the input list and (as mentioned by Will Ness) a deterministic integer position. List function splitAt :: Int -> [a] -> ([a], [a]) can come handy here. Like this:
funcShuffleList :: Int -> [a] -> [a]
funcShuffleList _ [] = []
funcShuffleList pos ls =
if (pos <=0) || (length(take (pos+1) ls) < (pos+1))
then ls -- pos is zero or out of bounds, so leave list unchanged
else let (left,right) = splitAt pos ls
in (head right) : (left ++ (tail right))
Testing:
λ>
λ> funcShuffleList 4 [0,1,2,3,4,5,6,7,8,9]
[4,0,1,2,3,5,6,7,8,9]
λ>
λ> funcShuffleList 5 "#ABCDEFGH"
"E#ABCDFGH"
λ>
Once you've got this, you can introduce randomness concerns in simpler fashion. And you do not need to involve IO explicitely, as any randomness-friendly monad will do:
shuffleList :: MonadRandom mr => [a] -> mr [a]
shuffleList [] = return []
shuffleList ls =
do
let maxPos = (length ls) - 1
pos <- getRandomR (0, maxPos)
return (funcShuffleList pos ls)
... IO being just one instance of MonadRandom.
You can run the code using the default IO-hosted random number generator:
main = do
let inpList = [0,1,2,3,4,5,6,7,8]::[Integer]
putStrLn $ "inpList = " ++ (show inpList)
-- mr automatically instantiated to IO:
outList1 <- shuffleList inpList
putStrLn $ "outList1 = " ++ (show outList1)
outList2 <- shuffleList outList1
putStrLn $ "outList2 = " ++ (show outList2)
Program output:
$ pickShuffle
inpList = [0,1,2,3,4,5,6,7,8]
outList1 = [6,0,1,2,3,4,5,7,8]
outList2 = [8,6,0,1,2,3,4,5,7]
$
$ pickShuffle
inpList = [0,1,2,3,4,5,6,7,8]
outList1 = [4,0,1,2,3,5,6,7,8]
outList2 = [2,4,0,1,3,5,6,7,8]
$
The output is not reproducible here, because the default generator is seeded by its launch time in nanoseconds.
If what you need is a full random permutation, you could have a look here and there - Knuth a.k.a. Fisher-Yates algorithm.
Related
My code aims to create a word search puzzle. There is a data called Orientation representing the direction of each word in the puzzle.
data Orientation =
Forward | Back | Up | Down | UpForward | UpBack | DownForward | DownBack
deriving (Eq, Ord, Show, Read)
Now given a input of strings which is [String], I want to randomly assign each string an orientation like [(Orientation, String)]
assignWordDir :: [String] -> [(Orientation, String)]
assignWordDir [] = []
assignWordDir (s:strs) = (ori, s) : assignWordDir
where ori = pickOri [Forward, Back, Up, Down, UpForward, UpBack, DownForward, DownBack]
pickOri :: [a] -> IO a
pickOri xs = do
i <- randomRIO (0, len)
pure $ xs !! i
where len = length xs - 1
I cannot compile because the output of pickOri is IO Orientation, is there any suggestions on how to modify my code? Thanks a lot
Couldn't match expected type ‘[(IO Orientation, String)]’
with actual type ‘[String] -> [(Orientation, String)]’
You might consider modifying the functions so that they stay pure by taking a RandomGen parameter. The pickOri function, for example, might be modified thusly:
pickOri :: RandomGen g => g -> [a] -> (a, g)
pickOri rnd xs =
let len = length xs - 1
(i, g) = randomR (0, len) rnd
in (xs !! i, g)
It's necessary to return the new RandomGen value g together with the selected list element, so that it'll generate another pseudo-random number the next time around.
Likewise, you can modify assignWordDir like this:
assignWordDir :: RandomGen g => g -> [b] -> [(Orientation, b)]
assignWordDir _ [] = []
assignWordDir rnd (s:strs) = (ori, s) : assignWordDir g strs
where (ori, g) =
pickOri rnd [Forward, Back, Up, Down, UpForward, UpBack, DownForward, DownBack]
Notice that when recursing into to assignWordDir, the recursive function call uses the g it receives from pickOri.
You can use mkStdGen or newStdGen to produce RandomGen values. Here's an example using newStdGen:
*Q65132918> rnd <- newStdGen
*Q65132918> assignWordDir rnd ["foo", "bar", "baz"]
[(UpBack,"foo"),(Up,"bar"),(UpBack,"baz")]
*Q65132918> assignWordDir rnd ["foo", "bar", "baz"]
[(UpBack,"foo"),(Up,"bar"),(UpBack,"baz")]
Notice that when you use the same RandomGen value, you get the same sequence. That's because assignWordDir is a pure function, so that's expected.
You can, however, produce a new random sequence by creating or getting a new StdGen value:
*Q65132918> rnd <- newStdGen
*Q65132918> assignWordDir rnd ["foo", "bar", "baz"]
[(Up,"foo"),(Up,"bar"),(Forward,"baz")]
If you want to play with this in a compiled module, you can keep these functions as presented here, and then compose them with a newStdGen-generated StdGen in the main entry point.
i'm trying to write a function that for n gives matrix n*n with unique rows and columns (latin square).
I got function that gives my list of strings "1" .. "2" .. "n"
numSymbol:: Int -> [String]
I tried to generate all permutations of this, and them all n-length tuples of permutations, and them check if it is unique in row / columns. But complexity (n!)^2 works perfect for 2 and 3, but with n > 3 it takes forever. It is possible to build latin square from permutations directly, for example from
permutation ( numSymbol 3) = [["1","2","3"],["1","3","2"],["2","1","3"],["2","3","1"],["3","1","2"],["3","2","1"]]
get
[[["1","2","3",],["2","1","3"],["3","1","2"]] , ....]
without generating list like [["1",...],["1",...],...], when we know first element disqualify it ?
Note: since we can easily take a Latin square that's been filled with numbers from 1 to n and re-label it with anything we want, we can write code that uses integer symbols without giving anything away, so let's stick with that.
Anyway, the stateful backtracking/nondeterministic monad:
type StateList s = StateT s []
is helpful for this sort of problem.
Here's the idea. We know that every symbol s is going to appear exactly once in each row r, so we can represent this with an urn of all possible ordered pairs (r,s):
my_rs_urn = [(r,s) | r <- [1..n], s <- [1..n]]
Similarly, as every symbol s appears exactly once in each column c, we can use a second urn:
my_cs_urn = [(c,s) | c <- [1..n], s <- [1..n]]
Creating a Latin square is matter of filling in each position (r,c) with a symbol s by removing matching balls (r,s) and (c,s) (i.e., removing two balls, one from each urn) so that every ball is used exactly once. Our state will be the content of the urns.
We need backtracking because we might reach a point where for a particular position (r,c), there is no s such that (r,s) and (c,s) are both still available in their respective urns. Also, a pleasant side-effect of list-based backtracking/nondeterminism is that it'll generate all possible Latin squares, not just the first one it finds.
Given this, our state will look like:
type Urn = [(Int,Int)]
data S = S
{ size :: Int
, rs :: Urn
, cs :: Urn }
I've included the size in the state for convenience. It won't ever be modified, so it actually ought to be in a Reader instead, but this is simpler.
We'll represent a square by a list of cell contents in row-major order (i.e., the symbols in positions [(1,1),(1,2),...,(1,n),(2,1),...,(n,n)]):
data Square = Square
Int -- square size
[Int] -- symbols in row-major order
deriving (Show)
Now, the monadic action to generate latin squares will look like this:
type M = StateT S []
latin :: M Square
latin = do
n <- gets size
-- for each position (r,c), get a valid symbol `s`
cells <- forM (pairs n) (\(r,c) -> getS r c)
return $ Square n cells
pairs :: Int -> [(Int,Int)]
pairs n = -- same as [(x,y) | x <- [1..n], y <- [1..n]]
(,) <$> [1..n] <*> [1..n]
The worker function getS picks an s so that (r,s) and (c,s) are available in the respective urns, removing those pairs from the urns as a side effect. Note that getS is written non-deterministically, so it'll try every possible way of picking an s and associated balls from the urns:
getS :: Int -> Int -> M Int
getS r c = do
-- try each possible `s` in the row
s <- pickSFromRow r
-- can we put `s` in this column?
pickCS c s
-- if so, `s` is good
return s
Most of the work is done by the helpers pickSFromRow and pickCS. The first, pickSFromRow picks an s from the given row:
pickSFromRow :: Int -> M Int
pickSFromRow r = do
balls <- gets rs
-- "lift" here non-determinstically picks balls
((r',s), rest) <- lift $ choices balls
-- only consider balls in matching row
guard $ r == r'
-- remove the ball
modify (\st -> st { rs = rest })
-- return the candidate "s"
return s
It uses a choices helper which generates every possible way of pulling one element out of a list:
choices :: [a] -> [(a,[a])]
choices = init . (zipWith f <$> inits <*> tails)
where f a (x:b) = (x, a++b)
f _ _ = error "choices: internal error"
The second, pickCS checks if (c,s) is available in the cs urn, and removes it if it is:
pickCS :: Int -> Int -> M ()
pickCS c s = do
balls <- gets cs
-- only continue if the required ball is available
guard $ (c,s) `elem` balls
-- remove the ball
modify (\st -> st { cs = delete (c,s) balls })
With an appropriate driver for our monad:
runM :: Int -> M a -> [a]
runM n act = evalStateT act (S n p p)
where p = pairs n
this can generate all 12 Latin square of size 3:
λ> runM 3 latin
[Square 3 [1,2,3,2,3,1,3,1,2],Square 3 [1,2,3,3,1,2,2,3,1],...]
or the 576 Latin squares of size 4:
λ> length $ runM 4 latin
576
Compiled with -O2, it's fast enough to enumerate all 161280 squares of size 5 in a couple seconds:
main :: IO ()
main = print $ length $ runM 5 latin
The list-based urn representation above isn't very efficient. On the other hand, because the lengths of the lists are pretty small, there's not that much to be gained by finding more efficient representations.
Nonetheless, here's complete code that uses efficient Map/Set representations tailored to the way the rs and cs urns are used. Compiled with -O2, it runs in constant space. For n=6, it can process about 100000 Latin squares per second, but that still means it'll need to run for a few hours to enumerate all 800 million of them.
{-# OPTIONS_GHC -Wall #-}
module LatinAll where
import Control.Monad.State
import Data.List
import Data.Set (Set)
import qualified Data.Set as Set
import Data.Map (Map, (!))
import qualified Data.Map as Map
data S = S
{ size :: Int
, rs :: Map Int [Int]
, cs :: Set (Int, Int) }
data Square = Square
Int -- square size
[Int] -- symbols in row-major order
deriving (Show)
type M = StateT S []
-- Get Latin squares
latin :: M Square
latin = do
n <- gets size
cells <- forM (pairs n) (\(r,c) -> getS r c)
return $ Square n cells
-- All locations in row-major order [(1,1),(1,2)..(n,n)]
pairs :: Int -> [(Int,Int)]
pairs n = (,) <$> [1..n] <*> [1..n]
-- Get a valid `s` for position `(r,c)`.
getS :: Int -> Int -> M Int
getS r c = do
s <- pickSFromRow r
pickCS c s
return s
-- Get an available `s` in row `r` from the `rs` urn.
pickSFromRow :: Int -> M Int
pickSFromRow r = do
urn <- gets rs
(s, rest) <- lift $ choices (urn ! r)
modify (\st -> st { rs = Map.insert r rest urn })
return s
-- Remove `(c,s)` from the `cs` urn.
pickCS :: Int -> Int -> M ()
pickCS c s = do
balls <- gets cs
guard $ (c,s) `Set.member` balls
modify (\st -> st { cs = Set.delete (c,s) balls })
-- Return all ways of removing one element from list.
choices :: [a] -> [(a,[a])]
choices = init . (zipWith f <$> inits <*> tails)
where f a (x:b) = (x, a++b)
f _ _ = error "choices: internal error"
-- Run an action in the M monad.
runM :: Int -> M a -> [a]
runM n act = evalStateT act (S n rs0 cs0)
where rs0 = Map.fromAscList $ zip [1..n] (repeat [1..n])
cs0 = Set.fromAscList $ pairs n
main :: IO ()
main = do
print $ runM 3 latin
print $ length (runM 4 latin)
print $ length (runM 5 latin)
Somewhat remarkably, modifying the program to produce only reduced Latin squares (i.e., with symbols [1..n] in order in both the first row and the first column) requires changing only two functions:
-- All locations in row-major order, skipping first row and column
-- i.e., [(2,2),(2,3)..(n,n)]
pairs :: Int -> [(Int,Int)]
pairs n = (,) <$> [2..n] <*> [2..n]
-- Run an action in the M monad.
runM :: Int -> M a -> [a]
runM n act = evalStateT act (S n rs0 cs0)
where -- skip balls [(1,1)..(n,n)] for first row
rs0 = Map.fromAscList $ map (\r -> (r, skip r)) [2..n]
-- skip balls [(1,1)..(n,n)] for first column
cs0 = Set.fromAscList $ [(c,s) | c <- [2..n], s <- skip c]
skip i = [1..(i-1)]++[(i+1)..n]
With these modifications, the resulting Square will include symbols in row-major order but skipping the first row and column. For example:
λ> runM 3 latin
[Square 3 [3,1,1,2]]
means:
1 2 3 fill in question marks 1 2 3
2 ? ? =====================> 2 3 1
3 ? ? in row-major order 3 1 2
This is fast enough to enumerate all 16,942,080 reduced Latin squares of size 7 in a few minutes:
$ stack ghc -- -O2 -main-is LatinReduced LatinReduced.hs && time ./LatinReduced
[1 of 1] Compiling LatinReduced ( LatinReduced.hs, LatinReduced.o )
Linking LatinReduced ...
16942080
real 3m9.342s
user 3m8.494s
sys 0m0.848s
I have written this function that computes Collatz sequences, and I see wildly varying times of execution depending on the spin I give it. Apparently it is related to something called "memoization", but I have a hard time understanding what it is and how it works, and, unfortunately, the relevant article on HaskellWiki, as well as the papers it links to, have all proven to not be easily surmountable. They discuss intricate details of the relative performance of highly layman-indifferentiable tree constructions, while what I miss must be some very basic, very trivial point that these sources neglect to mention.
This is the code. It is a complete program, ready to be built and executed.
module Main where
import Data.Function
import Data.List (maximumBy)
size :: (Integral a) => a
size = 10 ^ 6
-- Nail the basics.
collatz :: Integral a => a -> a
collatz n | even n = n `div` 2
| otherwise = n * 3 + 1
recollatz :: Integral a => a -> a
recollatz = fix $ \f x -> if (x /= 1)
then f (collatz x)
else x
-- Now, I want to do the counting with a tuple monad.
mocollatz :: Integral b => b -> ([b], b)
mocollatz n = ([n], collatz n)
remocollatz :: Integral a => a -> ([a], a)
remocollatz = fix $ \f x -> if x /= 1
then f =<< mocollatz x
else return x
-- Trivialities.
collatzLength :: Integral a => a -> Int
collatzLength x = (length . fst $ (remocollatz x)) + 1
collatzPairs :: Integral a => a -> [(a, Int)]
collatzPairs n = zip [1..n] (collatzLength <$> [1..n])
longestCollatz :: Integral a => a -> (a, Int)
longestCollatz n = maximumBy order $ collatzPairs n
where
order :: Ord b => (a, b) -> (a, b) -> Ordering
order x y = snd x `compare` snd y
main :: IO ()
main = print $ longestCollatz size
With ghc -O2 it takes about 17 seconds, without ghc -O2 -- about 22 seconds to deliver the length and the seed of the longest Collatz sequence starting at any point below size.
Now, if I make these changes:
diff --git a/Main.hs b/Main.hs
index c78ad95..9607fe0 100644
--- a/Main.hs
+++ b/Main.hs
## -1,6 +1,7 ##
module Main where
import Data.Function
+import qualified Data.Map.Lazy as M
import Data.List (maximumBy)
size :: (Integral a) => a
## -22,10 +23,15 ## recollatz = fix $ \f x -> if (x /= 1)
mocollatz :: Integral b => b -> ([b], b)
mocollatz n = ([n], collatz n)
-remocollatz :: Integral a => a -> ([a], a)
-remocollatz = fix $ \f x -> if x /= 1
- then f =<< mocollatz x
- else return x
+remocollatz :: (Num a, Integral b) => b -> ([b], a)
+remocollatz 1 = return 1
+remocollatz x = case M.lookup x (table mutate) of
+ Nothing -> mutate x
+ Just y -> y
+ where mutate x = remocollatz =<< mocollatz x
+
+table :: (Ord a, Integral a) => (a -> b) -> M.Map a b
+table f = M.fromList [ (x, f x) | x <- [1..size] ]
-- Trivialities.
-- Then it will take just about 4 seconds with ghc -O2, but I would not live long enough to see it complete without ghc -O2.
Looking at the details of cost centres with ghc -prof -fprof-auto -O2 reveals that the first version enters collatz about a hundred million times, while the patched one -- just about one and a half million times. This must be the reason of the speedup, but I have a hard time understanding the inner workings of this magic. My best idea is that we replace a portion of expensive recursive calls with O(log n) map lookups, but I don't know if it's true and why it depends so much on some godforsaken compiler flags, while, as I see it, such performance swings should all follow solely from the language.
Can I haz an explanation of what happens here, and why the performance differs so vastly between ghc -O2 and plain ghc builds?
P.S. There are two requirements to the achieving of automagical memoization highlighted elsewhere on Stack Overflow:
Make a function to be memoized a top-level name.
Make a function to be memoized a monomorphic one.
In line with these requirements, I rebuilt remocollatz as follows:
remocollatz :: Int -> ([Int], Int)
remocollatz 1 = return 1
remocollatz x = mutate x
mutate :: Int -> ([Int], Int)
mutate x = remocollatz =<< mocollatz x
Now it's as top level and as monomorphic as it gets. Running time is about 11 seconds, versus the similarly monomorphized table version:
remocollatz :: Int -> ([Int], Int)
remocollatz 1 = return 1
remocollatz x = case M.lookup x (table mutate) of
Nothing -> mutate x
Just y -> y
mutate :: Int -> ([Int], Int)
mutate = \x -> remocollatz =<< mocollatz x
table :: (Int -> ([Int], Int)) -> M.Map Int ([Int], Int)
table f = M.fromList [ (x, f x) | x <- [1..size] ]
-- Running in less than 4 seconds.
I wonder why the memoization ghc is supposedly performing in the first case here is almost 3 times slower than my dumb table.
Can I haz an explanation of what happens here, and why the performance differs so vastly between ghc -O2 and plain ghc builds?
Disclaimer: this is a guess, not verified by viewing GHC core output. A careful answer would do so to verify the conjectures outlined below. You can try peering through it yourself: add -ddump-simpl to your compilation line and you will get copious output detailing exactly what GHC has done to your code.
You write:
remocollatz x = {- ... -} table mutate {- ... -}
where mutate x = remocollatz =<< mocollatz x
The expression table mutate in fact does not depend on x; but it appears on the right-hand side of an equation that takes x as an argument. Consequently, without optimizations, this table is recomputed each time remocollatz is called (presumably even from inside the computation of table mutate).
With optimizations, GHC notices that table mutate does not depend on x, and floats it to its own definition, effectively producing:
fresh_variable_name = table mutate
where mutate x = remocollatz =<< mocollatz x
remocollatz x = case M.lookup x fresh_variable_name of
{- ... -}
The table is therefore computed just once for the entire program run.
don't know why it [the performance] depends so much on some godforsaken compiler flags, while, as I see it, such performance swings should all follow solely from the language.
Sorry, but Haskell doesn't work that way. The language definition tells clearly what the meaning of a given Haskell term is, but does not say anything about the runtime or memory performance needed to compute that meaning.
Another approach to memoization that works in some situations, like this one, is to use a boxed vector, whose elements are computed lazily. The function used to initialize each element can use other elements of the vector in its calculation. As long as the evaluation of an element of the vector doesn't loop and refer to itself, just the elements it recursively depends on will be evaluated. Once evaluated, an element is effectively memoized, and this has the further benefit that elements of the vector that are never referenced are never evaluated.
The Collatz sequence is a nearly ideal application for this technique, but there is one complication. The next Collatz value(s) in sequence from a value under the limit may be outside the limit, which would cause a range error when indexing the vector. I solved this by just iterating through the sequence until back under the limit and counting the steps to do so.
The following program takes 0.77 seconds to run unoptimized and 0.30 when optimized:
import qualified Data.Vector as V
limit = 10 ^ 6 :: Int
-- The Collatz function, which given a value returns the next in the sequence.
nextCollatz val
| odd val = 3 * val + 1
| otherwise = val `div` 2
-- Given a value, return the next Collatz value in the sequence that is less
-- than the limit and the number of steps to get there. For example, the
-- sequence starting at 13 is: [13, 40, 20, 10, 5, 16, 8, 4, 2, 1], so if
-- limit is 100, then (nextCollatzWithinLimit 13) is (40, 1), but if limit is
-- 15, then (nextCollatzWithinLimit 13) is (10, 3).
nextCollatzWithinLimit val = (firstInRange, stepsToFirstInRange)
where
firstInRange = head rest
stepsToFirstInRange = 1 + (length biggerThanLimit)
(biggerThanLimit, rest) = span (>= limit) (tail collatzSeqStartingWithVal)
collatzSeqStartingWithVal = iterate nextCollatz val
-- A boxed vector holding Collatz length for each index. The collatzFn used
-- to generate the value for each element refers back to other elements of
-- this vector, but since the vector elements are only evaluated as needed and
-- there aren't any loops in the Collatz sequences, the values are calculated
-- only as needed.
collatzVec :: V.Vector Int
collatzVec = V.generate limit collatzFn
where
collatzFn :: Int -> Int
collatzFn index
| index <= 1 = 1
| otherwise = (collatzVec V.! nextWithinLimit) + stepsToGetThere
where
(nextWithinLimit, stepsToGetThere) = nextCollatzWithinLimit index
main :: IO ()
main = do
-- Use a fold through the vector to find the longest Collatz sequence under
-- the limit, and keep track of both the maximum length and the initial
-- value of the sequence, which is the index.
let (maxLength, maxIndex) = V.ifoldl' accMaxLen (0, 0) collatzVec
accMaxLen acc#(accMaxLen, accMaxIndex) index currLen
| currLen <= accMaxLen = acc
| otherwise = (currLen, index)
putStrLn $ "Max Collatz length below " ++ show limit ++ " is "
++ show maxLength ++ " at index " ++ show maxIndex
So I'm trying to make a little program that can take in data captured during an experiment, and for the most part I think I've figured out how to recursively take in data until the user signals there is no more, however upon termination of data taking haskell throws Exception: <<loop>> and I can't really figure out why. Here's the code:
readData :: (Num a, Read a) => [Point a] -> IO [Point a]
readData l = do putStr "Enter Point (x,y,<e>) or (d)one: "
entered <- getLine
if (entered == "d" || entered == "done")
then return l
else do let l = addPoint l entered
nl <- readData l
return nl
addPoint :: (Num a, Read a) => [Point a] -> String -> [Point a]
addPoint l s = l ++ [Point (dataList !! 0) (dataList !! 1) (dataList !! 2)]
where dataList = (map read $ checkInputData . splitOn "," $ s) :: (Read a) => [a]
checkInputData :: [String] -> [String]
checkInputData xs
| length xs < 2 = ["0","0","0"]
| length xs < 3 = (xs ++ ["0"])
| length xs == 3 = xs
| length xs > 3 = ["0","0","0"]
As far as I can tell, the exception is indication that there is an infinite loop somewhere, but I can't figure out why this is occurring. As far as I can tell when "done" is entered the current level should simply return l, the list it's given, which should then cascade up the previous iterations of the function.
Thanks for any help. (And yes, checkInputData will have proper error handling once I figure out how to do that.)
<<loop>> basically means GHC has detected an infinite loop caused by a value which depends immediately on itself (cf. this question, or this one for further technical details if you are curious). In this case, that is triggered by:
else do let l = addPoint l entered
This definition, which shadows the l you passed as an argument, defines l in terms of itself. You meant to write something like...
else do let l' = addPoint l entered
... which defines a new value, l', in terms of the original l.
As Carl points out, turning on -Wall (e.g. by passing it to GHC at the command line, or with :set -Wall in GHCi) would make GHC warn you about the shadowing:
<interactive>:171:33: warning: [-Wname-shadowing]
This binding for ‘l’ shadows the existing binding
bound at <interactive>:167:10
Also, as hightlighted by dfeuer, the whole do-block in the else branch can be replaced by:
readData (addPoint l entered)
As an unrelated suggestion, in this case it is a good idea to replace your uses of length and (!!) with pattern matching. For instance, checkInputData can be written as:
checkInputData :: [String] -> [String]
checkInputData xs = case xs of
[_,_] -> xs ++ ["0"]
[_,_,_] -> xs
_ -> ["0","0","0"]
addPoint, in its turn, might become:
addPoint :: (Num a, Read a) => [Point a] -> String -> [Point a]
addPoint l s = l ++ [Point x y z]
where [x,y,z] = (map read $ checkInputData . splitOn "," $ s) :: (Read a) => [a]
That becomes even neater if you change checkInputData so that it returns a (String, String, String) triple, which would better express the invariant that you are reading exactly three values.
I'm trying to complete the last part of my Haskell homework and I'm stuck, my code so far:
data Entry = Entry (String, String)
class Lexico a where
(<!), (=!), (>!) :: a -> a -> Bool
instance Lexico Entry where
Entry (a,_) <! Entry (b,_) = a < b
Entry (a,_) =! Entry (b,_) = a == b
Entry (a,_) >! Entry (b,_) = a > b
entries :: [(String, String)]
entries = [("saves", "en vaut"), ("time", "temps"), ("in", "<`a>"),
("{", "{"), ("A", "Un"), ("}", "}"), ("stitch", "point"),
("nine.", "cent."), ("Zazie", "Zazie")]
build :: (String, String) -> Entry
build (a, b) = Entry (a, b)
diction :: [Entry]
diction = quiksrt (map build entries)
size :: [a] -> Integer
size [] = 0
size (x:xs) = 1+ size xs
quiksrt :: Lexico a => [a] -> [a]
quiksrt [] = []
quiksrt (x:xs)
|(size [y|y <- xs, y =! x]) > 0 = error "Duplicates not allowed."
|otherwise = quiksrt [y|y <- xs, y <! x]++ [x] ++ quiksrt [y|y <- xs, y >! x]
english :: String
english = "A stitch in time save nine."
show :: Entry -> String
show (Entry (a, b)) = "(" ++ Prelude.show a ++ ", " ++ Prelude.show b ++ ")"
showAll :: [Entry] -> String
showAll [] = []
showAll (x:xs) = Main.show x ++ "\n" ++ showAll xs
main :: IO ()
main = do putStr (showAll ( diction ))
The question asks:
Write a Haskell programs that takes
the English sentence 'english', looks
up each word in the English-French
dictionary using binary search,
performs word-for-word substitution,
assembles the French translation, and
prints it out.
The function 'quicksort' rejects
duplicate entries (with 'error'/abort)
so that there is precisely one French
definition for any English word. Test
'quicksort' with both the original
'raw_data' and after having added
'("saves", "sauve")' to 'raw_data'.
Here is a von Neumann late-stopping
version of binary search. Make a
literal transliteration into Haskell.
Immediately upon entry, the Haskell
version must verify the recursive
"loop invariant", terminating with
'error'/abort if it fails to hold. It
also terminates in the same fashion if
the English word is not found.
function binsearch (x : integer) : integer
local j, k, h : integer
j,k := 1,n
do j+1 <> k --->
h := (j+k) div 2
{a[j] <= x < a[k]} // loop invariant
if x < a[h] ---> k := h
| x >= a[h] ---> j := h
fi
od
{a[j] <= x < a[j+1]} // termination assertion
found := x = a[j]
if found ---> return j
| not found ---> return 0
fi
In the Haskell version
binsearch :: String -> Integer -> Integer -> Entry
as the constant dictionary 'a' of type
'[Entry]' is globally visible. Hint:
Make your string (English word) into
an 'Entry' immediately upon entering
'binsearch'.
The programming value of the
high-level data type 'Entry' is that,
if you can design these two functions
over the integers, it is trivial to
lift them to to operate over Entry's.
Anybody know how I'm supposed to go about my binarysearch function?
The instructor asks for a "literal transliteration", so use the same variable names, in the same order. But note some differences:
the given version takes only 1
parameter, the signature he gives
requires 3. Hmmm,
the given version is not recursive, but he asks for a
recursive version.
Another answer says to convert to an Array, but for such a small exercise (this is homework after all), I felt we could pretend that lists are direct access. I just took your diction::[Entry] and indexed into that. I did have to convert between Int and Integer in a few places.
Minor nit: You've got a typo in your english value (bs is a shortcut to binSearch I made):
*Main> map bs (words english)
[Entry ("A","Un"),Entry ("stitch","point"),Entry ("in","<`a>"),Entry ("time","te
mps"),*** Exception: Not found
*Main> map bs (words englishFixed)
[Entry ("A","Un"),Entry ("stitch","point"),Entry ("in","<`a>"),Entry ("time","te
mps"),Entry ("saves","en vaut"),Entry ("nine.","cent.")]
*Main>
A binary search needs random access, which is not possible on a list. So, the first thing to do would probably be to convert the list to an Array (with listArray), and do the search on it.
here's my code for just the English part of the question (I tested it and it works perfectly) :
module Main where
class Lex a where
(<!), (=!), (>!) :: a -> a -> Bool
data Entry = Entry String String
instance Lex Entry where
(Entry a _) <! (Entry b _) = a < b
(Entry a _) =! (Entry b _) = a == b
(Entry a _) >! (Entry b _) = a > b
-- at this point, three binary (infix) operators on values of type 'Entry'
-- have been defined
type Raw = (String, String)
raw_data :: [Raw]
raw_data = [("than a", "qu'un"), ("saves", "en vaut"), ("time", "temps"),
("in", "<`a>"), ("worse", "pire"), ("{", "{"), ("A", "Un"),
("}", "}"), ("stitch", "point"), ("crime;", "crime,"),
("a", "une"), ("nine.", "cent."), ("It's", "C'est"),
("Zazie", "Zazie"), ("cat", "chat"), ("it's", "c'est"),
("raisin", "raisin sec"), ("mistake.", "faute."),
("blueberry", "myrtille"), ("luck", "chance"),
("bad", "mauvais")]
cook :: Raw -> Entry
cook (x, y) = Entry x y
a :: [Entry]
a = map cook raw_data
quicksort :: Lex a => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = quicksort (filter (<! x) xs) ++ [x] ++ quicksort (filter (=! x) xs) ++ quicksort (filter (>! x) xs)
getfirst :: Entry -> String
getfirst (Entry x y) = x
getsecond :: Entry -> String
getsecond (Entry x y) = y
binarysearch :: String -> [Entry] -> Int -> Int -> String
binarysearch s e low high
| low > high = " NOT fOUND "
| getfirst ((e)!!(mid)) > s = binarysearch s (e) low (mid-1)
| getfirst ((e)!!(mid)) < s = binarysearch s (e) (mid+1) high
| otherwise = getsecond ((e)!!(mid))
where mid = (div (low+high) 2)
translator :: [String] -> [Entry] -> [String]
translator [] y = []
translator (x:xs) y = (binarysearch x y 0 ((length y)-1):translator xs y)
english :: String
english = "A stitch in time saves nine."
compute :: String -> [Entry] -> String
compute x y = unwords(translator (words (x)) y)
main = do
putStr (compute english (quicksort a))
An important Prelude operator is:
(!!) :: [a] -> Integer -> a
-- xs!!n returns the nth element of xs, starting at the left and
-- counting from 0.
Thus, [14,7,3]!!1 ~~> 7.