I am trying to plot two true positive rate and false positive rate values for two different cases. While plotting, the second plot cancels out the display of the first sort of.
import math
import numpy as np
import random
import os
import sys
from scipy.spatial import distance
from matplotlib import pyplot as plt
import pandas as pd
def fextract(fname1, fname2):
file1 = open(fname1,'r')
file2 = open(fname2,'r')
cnt = 122
data1 = file1.readlines()
data2 = file2.readlines()
print(len(data1))
tpr = np.zeros((1,cnt))
fpr = np.zeros((1,cnt))
cnt2 = 0
for x in data1:
if(cnt2 == 120):
break
tpr[0,cnt2] = float(x)
cnt2 = cnt2 + 1
cnt2 = 0
for x in data2:
if(cnt2 == 120):
break
fpr[0,cnt2] = float(x)
cnt2 = cnt2 + 1
return tpr, fpr
def plotfig(x1,y1,x2,y2):
f1 = plt.figure()
lg = plt.plot(x2[0,:], y2[0,:], label="Skin Color (With Chrominance)")
lg = plt.plot(x1[0,:], y1[0,:], label="Skin Color")
plt.legend(loc='best')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.show()
tpr,fpr = fextract('tp.txt','fp.txt')
tpr2,fpr2 = fextract('tp2.txt','fp2.txt')
tpr3,fpr3 = fextract('tp3.txt','fp3.txt')
tpr4,fpr4 = fextract('tp7.txt','fp7.txt')
tpr5,fpr5 = fextract('tp8.txt','fp8.txt')
tpr6,fpr6 = fextract('tp9.txt','fp9.txt')
plotfig(fpr,tpr,fpr4,tpr4)
plotfig(fpr2,tpr2,fpr5,tpr5)
plotfig(fpr3,tpr3,fpr6,tpr6)
As seen above, the the orange line stops midway and the blue gets plotted completely.
Related
I am trying to plot the put/call option using python but I am having some errors when obtaining my values and plot looks weird. I think there is something wrong with my loop of the matrices. My put and call prices should be 0.37 & 1.03. But I just get a printed out matrix. Some help would be appreciated.
import matplotlib.pyplot as plt
import numpy as np
S = 8.5
K = 8
r = 0.02
sigma = 0.2
T = 1
h = 0.0005
N = int(T/h)
stock_price = np.zeros((N+1,N+1))
option_price_call = np.zeros((N+1,N+1))
option_price_put = np.zeros((N+1,N+1))
stock_price[0,0] = S
for j in range(1, N+1):
stock_price[0,j]= stock_price[0,j-1] *np.exp(sigma*np.sqrt(h)*np.random.normal())
for j in range(0, N+1):
option_price_call[N,j] = max(stock_price[N,j]-K,0)
option_price_put[N,j] = max(K-stock_price[N,j],0)
for i in range(N-1, -1, -1):
for j in range(0, i+1):
stock_price[i,j] = stock_price[i+1,j]*np.exp(-r*h)
option_price_call[i,j] = (option_price_call[i+1,j+1]+option_price_call[i+1,j])/2
option_price_put[i,j] = (option_price_put[i+1,j+1]+option_price_put[i+1,j])/2
print(option_price_call)
print(option_price_put)
plt.figure(1)
plt.plot(stock_price[0,:],option_price_call[0,:], 'r', label = "Call option")
plt.plot(stock_price[0,:],option_price_put[0,:], 'b', label = "Put option")
plt.xlabel("Stock")
plt.ylabel("Price")
plt.legend()
plt.show()
Here is an example.
import numpy as np
import matplotlib.pyplot as plt
import seaborn
# Fortis stock price
spot_price = 138.90
# Long put
strike_price_long_put = 135
premium_long_put = 4
# Long call
strike_price_long_call = 145
premium_long_call = 3.50
# Stock price range at expiration of the put
sT = np.arange(0.7*spot_price,1.3*spot_price,1)
def call_payoff(sT, strike_price, premium):
return np.where(sT > strike_price, sT - strike_price, 0) - premium
payoff_long_call = call_payoff(sT, strike_price_long_call, premium_long_call)
# Plot
fig, ax = plt.subplots()
ax.spines['bottom'].set_position('zero')
ax.plot(sT,payoff_long_call,label='Long Call',color='r')
plt.xlabel('Stock Price')
plt.ylabel('Profit and loss')
plt.legend()
plt.show()
I would like help to plot a counterf only within the region bounded by the blue area in the image, not in the whole graph. I am trying to use matplotlib mpath and mpatches but I am getting several errors.
How could I plot the difference in levels (contorf) only within the area delimited by the blue markings?
Here is my code and the picture
#import base modules
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.interpolate import LinearNDInterpolator
from matplotlib.collections import PatchCollection
import matplotlib.path as mpath
import matplotlib.patches as mpatches
from mpl_toolkits.axes_grid1 import make_axes_locatable
#Loading the images
img1953 = plt.imread('O1953_9960_A3_1m.tif')
img1999 = plt.imread('O1999_9523_A3_1m.tif')
img2004 = plt.imread('O2004_2385c_A3_1m.tif')
#extract data from surfer files with pandas and name the columns as x and y, first line omited
area = pd.read_csv('diff_analyse_grd.bln', names=['x1', 'y1'], skiprows=1)
slope = pd.read_csv("Abbruchkante.bln", names=['x2', 'y2'], skiprows=1)
crack = pd.read_csv("Anrisskante.bln", names=['x3', 'y3'], skiprows=1)
xmin, xmax = -1100, -200 #set the maximum and miniumum values for the axIs:
ymin, ymax = 1500, 2100
#Read csv from grid/countour file, 1999
grid = np.loadtxt('kr_99_A3_o25.dat', delimiter = ' ', skiprows = 1, usecols = [1,2,3])
x99 = grid[:,0]
y99 = grid[:,1]
z99 = grid[:,2]
#linear space with 600x900 values between min and max graphic values
xi = np.linspace(xmin, xmax, 900)
yi = np.linspace(ymin, ymax, 600)
X, Y = np.meshgrid(xi, yi)
#Using LinearNDInterpolation, year 1999
interpolation99 = LinearNDInterpolator(list(zip(x99, y99)), z99)#https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LinearNDInterpolator.html
zi99 = interpolation99(X, Y)
#Read csv from grid/countour file, year 1953
grid = np.loadtxt('kr_53_A3_o25.dat', delimiter = ' ', skiprows = 1, usecols = [1,2,3])
x53 = grid[:,0]
y53 = grid[:,1]
z53 = grid[:,2]
#Using LinearNDInterpolation, year 1953
interpolation53 = LinearNDInterpolator(list(zip(x53,y53)), z53)
zi53 = interpolation53(X,Y)
#Calculation of the hight variation:
dh5399 = zi53 - zi99
#Plot graph 1953 - 1999
plt.title('Hangrutschung im Blaubachgraben \n \n Differenz der Geländeoberflachen \n 1953 - 1999')
plt.imshow(img1953,cmap='gray', extent=(xmin, xmax, ymin, ymax))
plt.plot(area.x1,area.y1,'b-', label ='Studienbereich', linewidth = 2)
plt.plot(slope.x2,slope.y2,'r-', label = 'Abbruchkante')
plt.plot(crack.x3,crack.y3,'r--', label = 'Anrisskante')
cs = plt.contour(X,Y,zi99,levels=10, colors='#333')
plt.clabel(cs,inline=True, colors = 'k')
plt.legend(loc='upper right')
plt.xlabel('North [m]')
plt.ylabel('East [m]')
plt.xlim(xmin,xmax)
plt.ylim(ymin,ymax)
cs = plt.contourf(X, Y, dh5399, cmap='rainbow', vmin=-5, vmax=17)
#Setting colorbar right the axis
ax = plt.gca()
divider = make_axes_locatable(ax)
cax = divider.append_axes('right',size='3%',pad=0.1)
cbar = plt.colorbar(cs, cax=cax)
cbar.set_label('\u0394H [m]', rotation = 360, loc = 'top')
plt.tight_layout()
plt.savefig('Dif1.png',dpi=400)
plt.show()
I want to create an interactive scatter plot so the user can select points with the cursor, so the chosen points are highlighted and the rest are faded.
Right now it only works if the color is changed, how can i change the opacity and keep the original colors?
import numpy as np
from numpy.random import rand
from matplotlib.widgets import LassoSelector
from matplotlib.path import Path
import matplotlib.pyplot as plt
class SelectFromCollection(object):
def __init__(self, ax, collection,c, alpha_other=0.3):
self.canvas = ax.figure.canvas
self.collection = collection
self.alpha_other = alpha_other
self.xys = collection.get_offsets()
self.Npts = len(self.xys)
self.c = c
# Ensure that we have separate colors for each object
self.fc = collection.get_facecolors()
if len(self.fc) == 0:
raise ValueError('Collection must have a facecolor')
elif len(self.fc) == 1:
self.fc = np.tile(self.fc, (self.Npts, 1))
self.lasso = LassoSelector(ax, onselect=self.onselect)
self.ind = []
def onselect(self, verts):
path = Path(verts)
self.ind = np.nonzero(path.contains_points(self.xys))[0]
self.fc[:, -1] = self.alpha_other
self.fc[self.ind, -1] = 1
self.collection.set_facecolors(self.fc)
self.canvas.draw_idle()
def disconnect(self):
self.lasso.disconnect_events()
self.fc[:, -1] = 1
self.collection.set_facecolors(self.fc)
self.canvas.draw_idle()
np.random.seed(1)
x, y, c = rand(3, 100)
subplot_kw = dict(xlim=(0, 1), ylim=(0, 1), autoscale_on=False)
fig, ax = plt.subplots(subplot_kw=subplot_kw)
pts = ax.scatter(x, y,c=c, s=100)
selector = SelectFromCollection(ax, pts, c)
plt.show()
Solved, I used the method self.collection.get_facecolors(), to get the format and values, then I just changed the value of the 3rd column for the chosen indices like this:
fc = self.collection.get_facecolors()
fc[self.ind, 3] = 1
fc[others, 3] = self.alpha_other
self.collection.set_facecolors(fc)
cheers
I wrote a program to plot oscilloscope data and make a KDE scatter plot with a colorbar. Unfortunately it requires a third party lib (readTrc) as well as the oscilloscope binary file which size is 200MB. The lib can be found on github.
import pandas as pd
import readTrc
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import collections
from scipy.stats import gaussian_kde
trcpath = 'filename.trc' #Binary Oscilloscope File (200 MB)
datX, datY, m = readTrc.readTrc(trcpath)
srx, sry = pd.Series(datX * 1000), pd.Series(datY * 1000)
df = pd.concat([srx, sry], axis = 1)
df.set_index(0, inplace = True)
df = df.abs() #Build Dataframe from above file
fig = plt.figure()
#Eliminate Noise
df[df < 3] = None
df = df.dropna()
#x and y axes data to plot
q1 = np.array(df[1].tolist()[:-2])
q2 = np.array(df[1].tolist()[1:-1])
q3 = np.array(df[1].tolist()[2:])
dq1 = q2 - q1
dq2 = q3 - q2
#Create first Dataset
qqstack = []
xy = np.vstack([dq1,dq2])
#Determine max value for colorbar (highest repeating x/y combination)
df_d = pd.DataFrame([dq1,dq2]).T
for idx, row in df_d.iterrows():
if row[0] == row[1]:
qqstack.append((row[0], row[1]))
cbar_max = collections.Counter(qqstack).most_common(1)[0][-1]
#sort to show most present values last
z = gaussian_kde(xy)(xy)
idx = z.argsort()
x, y, z = dq1[idx], dq2[idx], z[idx]
#plot graph
plt.scatter(x, y,
c=z,
s=20,
cmap = plt.cm.get_cmap('jet'))
#create colormap variable
sm = plt.cm.ScalarMappable(cmap = plt.cm.get_cmap('jet'),
norm = matplotlib.colors.PowerNorm(vmin = -0.1, vmax = cbar_max, gamma = 1))
sm._A = []
fig.colorbar(sm, ticks = range(0, cbar_max, 250))
plt.grid(zorder = 0, alpha = 0.3)
plt.xlabel('dq1 / mV')
plt.ylabel('dq2 / mV')
plt.show()
How can I adjust the color allocation in the plot? I want there to be less blue space so the transition is visible more, like on this graph:
Using the same example as from this previous question (code pasted below), we can get the 95% CI with the summary_table function from statsmodels outliers_influence. But now, how would it be possible to only subset the data points (x and y) that are outside the confidence interval?
import numpy as np
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import summary_table
#measurements genre
n = 100
x = np.linspace(0, 10, n)
e = np.random.normal(size=n)
y = 1 + 0.5*x + 2*e
X = sm.add_constant(x)
re = sm.OLS(y, X).fit()
st, data, ss2 = summary_table(re, alpha=0.05)
predict_ci_low, predict_ci_upp = data[:, 6:8].T
It might be a bit late for this, but you could put it in a pandas.DataFrame and filter depending on a list of booleans. Assuming I got your question:
import numpy as np
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import summary_table
import matplotlib.pyplot as plot
## Import pandas
import pandas as pd
#measurements genre
n = 100
x = np.linspace(0, 10, n)
e = np.random.normal(size=n)
y = 1 + 0.5*x + 2*e
X = sm.add_constant(x)
re = sm.OLS(y, X).fit()
st, data, ss2 = summary_table(re, alpha=0.05)
# Make prediction
prediction = re.predict(X)
predict_ci_low, predict_ci_upp = data[:, 6:8].T
# Put y and x in a pd.DataFrame
df = pd.DataFrame(y).set_index(x)
# Get the y values that are out of the ci intervals. This could be done directly in the df indexer
out_up = y > predict_ci_upp
out_down = y < predict_ci_low
# Plot everything
plot.plot(x, y, label = 'train')
plot.plot(df[out_up], marker = 'o', linewidth = 0)
plot.plot(df[out_down], marker = 'o', linewidth = 0)
plot.plot(x, predictionTrain, label = 'prediction')
plot.plot(x, predict_ci_upp, label = 'ci_up')
plot.plot(x, predict_ci_low, label = 'ci_low')
plot.legend(loc='best')
Here is the resulting plot: