So my dataset has some information by location for n dates. The problem is each date is actually a different column header. For example the CSV looks like
location name Jan-2010 Feb-2010 March-2010
A "test" 12 20 30
B "foo" 18 20 25
What I would like is for it to look like
location name Date Value
A "test" Jan-2010 12
A "test" Feb-2010 20
A "test" March-2010 30
B "foo" Jan-2010 18
B "foo" Feb-2010 20
B "foo" March-2010 25
My problem is I don't know how many dates are in the column (though I know they will always start after name)
UPDATE
From v0.20, melt is a first order function, you can now use
df.melt(id_vars=["location", "name"],
var_name="Date",
value_name="Value")
location name Date Value
0 A "test" Jan-2010 12
1 B "foo" Jan-2010 18
2 A "test" Feb-2010 20
3 B "foo" Feb-2010 20
4 A "test" March-2010 30
5 B "foo" March-2010 25
OLD(ER) VERSIONS: <0.20
You can use pd.melt to get most of the way there, and then sort:
>>> df
location name Jan-2010 Feb-2010 March-2010
0 A test 12 20 30
1 B foo 18 20 25
>>> df2 = pd.melt(df, id_vars=["location", "name"],
var_name="Date", value_name="Value")
>>> df2
location name Date Value
0 A test Jan-2010 12
1 B foo Jan-2010 18
2 A test Feb-2010 20
3 B foo Feb-2010 20
4 A test March-2010 30
5 B foo March-2010 25
>>> df2 = df2.sort(["location", "name"])
>>> df2
location name Date Value
0 A test Jan-2010 12
2 A test Feb-2010 20
4 A test March-2010 30
1 B foo Jan-2010 18
3 B foo Feb-2010 20
5 B foo March-2010 25
(Might want to throw in a .reset_index(drop=True), just to keep the output clean.)
Note: pd.DataFrame.sort has been deprecated in favour of pd.DataFrame.sort_values.
Use set_index with stack for MultiIndex Series, then for DataFrame add reset_index with rename:
df1 = (df.set_index(["location", "name"])
.stack()
.reset_index(name='Value')
.rename(columns={'level_2':'Date'}))
print (df1)
location name Date Value
0 A test Jan-2010 12
1 A test Feb-2010 20
2 A test March-2010 30
3 B foo Jan-2010 18
4 B foo Feb-2010 20
5 B foo March-2010 25
pd.wide_to_long
You can add a prefix to your year columns and then feed directly to pd.wide_to_long. I won't pretend this is efficient, but it may in certain situations be more convenient than pd.melt, e.g. when your columns already have an appropriate prefix.
df.columns = np.hstack((df.columns[:2], df.columns[2:].map(lambda x: f'Value{x}')))
res = pd.wide_to_long(df, stubnames=['Value'], i='name', j='Date').reset_index()\
.sort_values(['location', 'name'])
print(res)
name Date location Value
0 test Jan-2010 A 12
2 test Feb-2010 A 20
4 test March-2010 A 30
1 foo Jan-2010 B 18
3 foo Feb-2010 B 20
5 foo March-2010 B 25
I guess I found a simpler solution
temp1 = pd.melt(df1, id_vars=["location"], var_name='Date', value_name='Value')
temp2 = pd.melt(df1, id_vars=["name"], var_name='Date', value_name='Value')
Concat whole temp1 with temp2's column name
temp1['new_column'] = temp2['name']
You now have what you asked for.
Adding a link to a notebook which you can duplicate, demonstrating #DMS's answer using pandas.melt:
df.melt(id_vars=["location", "name"],
var_name="date",
value_name="value")
https://deepnote.com/#DataScience/Unpivot-a-DataFrame-from-wide-to-long-format-lN7WlqOdSlqroI_7DGAkoA
If you want to swap your rows with columns & columns with rows then try the transpose method of pandas:
df.T
Check the reference link:
https://note.nkmk.me/en/python-pandas-t-transpose/
Related
So my dataset has some information by location for n dates. The problem is each date is actually a different column header. For example the CSV looks like
location name Jan-2010 Feb-2010 March-2010
A "test" 12 20 30
B "foo" 18 20 25
What I would like is for it to look like
location name Date Value
A "test" Jan-2010 12
A "test" Feb-2010 20
A "test" March-2010 30
B "foo" Jan-2010 18
B "foo" Feb-2010 20
B "foo" March-2010 25
My problem is I don't know how many dates are in the column (though I know they will always start after name)
UPDATE
From v0.20, melt is a first order function, you can now use
df.melt(id_vars=["location", "name"],
var_name="Date",
value_name="Value")
location name Date Value
0 A "test" Jan-2010 12
1 B "foo" Jan-2010 18
2 A "test" Feb-2010 20
3 B "foo" Feb-2010 20
4 A "test" March-2010 30
5 B "foo" March-2010 25
OLD(ER) VERSIONS: <0.20
You can use pd.melt to get most of the way there, and then sort:
>>> df
location name Jan-2010 Feb-2010 March-2010
0 A test 12 20 30
1 B foo 18 20 25
>>> df2 = pd.melt(df, id_vars=["location", "name"],
var_name="Date", value_name="Value")
>>> df2
location name Date Value
0 A test Jan-2010 12
1 B foo Jan-2010 18
2 A test Feb-2010 20
3 B foo Feb-2010 20
4 A test March-2010 30
5 B foo March-2010 25
>>> df2 = df2.sort(["location", "name"])
>>> df2
location name Date Value
0 A test Jan-2010 12
2 A test Feb-2010 20
4 A test March-2010 30
1 B foo Jan-2010 18
3 B foo Feb-2010 20
5 B foo March-2010 25
(Might want to throw in a .reset_index(drop=True), just to keep the output clean.)
Note: pd.DataFrame.sort has been deprecated in favour of pd.DataFrame.sort_values.
Use set_index with stack for MultiIndex Series, then for DataFrame add reset_index with rename:
df1 = (df.set_index(["location", "name"])
.stack()
.reset_index(name='Value')
.rename(columns={'level_2':'Date'}))
print (df1)
location name Date Value
0 A test Jan-2010 12
1 A test Feb-2010 20
2 A test March-2010 30
3 B foo Jan-2010 18
4 B foo Feb-2010 20
5 B foo March-2010 25
pd.wide_to_long
You can add a prefix to your year columns and then feed directly to pd.wide_to_long. I won't pretend this is efficient, but it may in certain situations be more convenient than pd.melt, e.g. when your columns already have an appropriate prefix.
df.columns = np.hstack((df.columns[:2], df.columns[2:].map(lambda x: f'Value{x}')))
res = pd.wide_to_long(df, stubnames=['Value'], i='name', j='Date').reset_index()\
.sort_values(['location', 'name'])
print(res)
name Date location Value
0 test Jan-2010 A 12
2 test Feb-2010 A 20
4 test March-2010 A 30
1 foo Jan-2010 B 18
3 foo Feb-2010 B 20
5 foo March-2010 B 25
I guess I found a simpler solution
temp1 = pd.melt(df1, id_vars=["location"], var_name='Date', value_name='Value')
temp2 = pd.melt(df1, id_vars=["name"], var_name='Date', value_name='Value')
Concat whole temp1 with temp2's column name
temp1['new_column'] = temp2['name']
You now have what you asked for.
Adding a link to a notebook which you can duplicate, demonstrating #DMS's answer using pandas.melt:
df.melt(id_vars=["location", "name"],
var_name="date",
value_name="value")
https://deepnote.com/#DataScience/Unpivot-a-DataFrame-from-wide-to-long-format-lN7WlqOdSlqroI_7DGAkoA
If you want to swap your rows with columns & columns with rows then try the transpose method of pandas:
df.T
Check the reference link:
https://note.nkmk.me/en/python-pandas-t-transpose/
I am struggling to replicate sas(another programming language) inner merge in python .
The python inner merge is not matching with sas inner merge when duplicate key values are coming .
Below is an example :
zw = pd.DataFrame({"ID":[1,0,0,1,0,0,1],
"Name":['Shivansh','Shivansh','Shivansh','Amar','Arpit','Ranjeet','Priyanka'],
"job_profile":['DataS','SWD','DataA','DataA','AndroidD','PythonD','fullstac'],
"salary":[22,15,10,9,16,18,22],
"city":['noida','bangalore','hyderabad','noida','pune','gurugram','bangalore'],
"ant":[10,15,15,10,16,17,18]})
zw1 = pd.DataFrame({"ID-":[1,0,0,1,0,0,1],
"Name":['Shivansh','Shivansh','Swati','Amar','Arpit','Ranjeet','Priyanka'],
"job_profile_":['DataS','SWD','DataA','DataA','AndroidD','PythonD','fullstac'],
"salary_":[2,15,10,9,16,18,22],
"city_":['noida','kochi','hyderabad','noida','pune','gurugram','bangalore'],
"ant_":[1,15,15,10,16,17,18]})
zw and sw1 are the input tables . Both the tables need to be inner merged on the key column Name .The issue is both columns are having duplicate values in Name column .
Python is generating all possible combinations with the duplicate rows .
Below is the expected output :
I tried normal inner merge and tried dropping duplicate row with ID and Name columns , but still not getting the desired output .
df1=pd.merge(zw,zw1,on=['Name'],how='inner')
df1.drop_duplicates(['Name','ID'])
Use df.combine_first + df.sort_values combination:
df = zw.combine_first(zw1).sort_values('Name')
print(df)
ID ID- Name ant ant_ city city_ job_profile \
3 1 1 Amar 10 10 noida noida DataA
4 0 0 Arpit 16 16 pune pune AndroidD
6 1 1 Priyanka 18 18 bangalore bangalore fullstac
5 0 0 Ranjeet 17 17 gurugram gurugram PythonD
0 1 1 Shivansh 10 1 noida noida DataS
1 0 0 Shivansh 15 15 bangalore kochi SWD
2 0 0 Shivansh 15 15 hyderabad hyderabad DataA
job_profile_ salary salary_
3 DataA 9 9
4 AndroidD 16 16
6 fullstac 22 22
5 PythonD 18 18
0 DataS 22 2
1 SWD 15 15
2 DataA 10 10
I am trying to sum all columns based on the value of the first, but groupby.sum is unexpectedly not working.
Here is a minimal example:
import pandas as pd
data = [['Alex',10, 11],['Bob',12, 10],['Clarke',13, 9], ['Clarke',1, 1]]
df = pd.DataFrame(data,columns=['Name','points1', 'points2'])
print(df)
df.groupby('Name').sum()
print(df)
I get this:
Name points1 points2
0 Alex 10 11
1 Bob 12 10
2 Clarke 13 9
3 Clarke 1 1
And not this:
Name points1 points2
0 Alex 10 11
1 Bob 12 10
2 Clarke 14 10
From what i understand, the dataframe is not the right format for pandas to perform group by. I would like to understand what is wrong with it because this is just a toy example but i have the same problem with a real data-set.
The real data i'm trying to read is the John Hopkins University Covid-19 dataset:
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
You forget assign output of aggregation to variable, because aggregation not working inplace. So in your solution print (df) before and after groupby returned same original DataFrame.
df1 = df.groupby('Name', as_index=False).sum()
print (df1)
Name points1 points2
0 Alex 10 11
1 Bob 12 10
2 Clarke 14 10
Or you can set to same variable df:
df = df.groupby('Name', as_index=False).sum()
print (df)
Name points1 points2
0 Alex 10 11
1 Bob 12 10
2 Clarke 14 10
So my dataset has some information by location for n dates. The problem is each date is actually a different column header. For example the CSV looks like
location name Jan-2010 Feb-2010 March-2010
A "test" 12 20 30
B "foo" 18 20 25
What I would like is for it to look like
location name Date Value
A "test" Jan-2010 12
A "test" Feb-2010 20
A "test" March-2010 30
B "foo" Jan-2010 18
B "foo" Feb-2010 20
B "foo" March-2010 25
My problem is I don't know how many dates are in the column (though I know they will always start after name)
UPDATE
From v0.20, melt is a first order function, you can now use
df.melt(id_vars=["location", "name"],
var_name="Date",
value_name="Value")
location name Date Value
0 A "test" Jan-2010 12
1 B "foo" Jan-2010 18
2 A "test" Feb-2010 20
3 B "foo" Feb-2010 20
4 A "test" March-2010 30
5 B "foo" March-2010 25
OLD(ER) VERSIONS: <0.20
You can use pd.melt to get most of the way there, and then sort:
>>> df
location name Jan-2010 Feb-2010 March-2010
0 A test 12 20 30
1 B foo 18 20 25
>>> df2 = pd.melt(df, id_vars=["location", "name"],
var_name="Date", value_name="Value")
>>> df2
location name Date Value
0 A test Jan-2010 12
1 B foo Jan-2010 18
2 A test Feb-2010 20
3 B foo Feb-2010 20
4 A test March-2010 30
5 B foo March-2010 25
>>> df2 = df2.sort(["location", "name"])
>>> df2
location name Date Value
0 A test Jan-2010 12
2 A test Feb-2010 20
4 A test March-2010 30
1 B foo Jan-2010 18
3 B foo Feb-2010 20
5 B foo March-2010 25
(Might want to throw in a .reset_index(drop=True), just to keep the output clean.)
Note: pd.DataFrame.sort has been deprecated in favour of pd.DataFrame.sort_values.
Use set_index with stack for MultiIndex Series, then for DataFrame add reset_index with rename:
df1 = (df.set_index(["location", "name"])
.stack()
.reset_index(name='Value')
.rename(columns={'level_2':'Date'}))
print (df1)
location name Date Value
0 A test Jan-2010 12
1 A test Feb-2010 20
2 A test March-2010 30
3 B foo Jan-2010 18
4 B foo Feb-2010 20
5 B foo March-2010 25
pd.wide_to_long
You can add a prefix to your year columns and then feed directly to pd.wide_to_long. I won't pretend this is efficient, but it may in certain situations be more convenient than pd.melt, e.g. when your columns already have an appropriate prefix.
df.columns = np.hstack((df.columns[:2], df.columns[2:].map(lambda x: f'Value{x}')))
res = pd.wide_to_long(df, stubnames=['Value'], i='name', j='Date').reset_index()\
.sort_values(['location', 'name'])
print(res)
name Date location Value
0 test Jan-2010 A 12
2 test Feb-2010 A 20
4 test March-2010 A 30
1 foo Jan-2010 B 18
3 foo Feb-2010 B 20
5 foo March-2010 B 25
I guess I found a simpler solution
temp1 = pd.melt(df1, id_vars=["location"], var_name='Date', value_name='Value')
temp2 = pd.melt(df1, id_vars=["name"], var_name='Date', value_name='Value')
Concat whole temp1 with temp2's column name
temp1['new_column'] = temp2['name']
You now have what you asked for.
Adding a link to a notebook which you can duplicate, demonstrating #DMS's answer using pandas.melt:
df.melt(id_vars=["location", "name"],
var_name="date",
value_name="value")
https://deepnote.com/#DataScience/Unpivot-a-DataFrame-from-wide-to-long-format-lN7WlqOdSlqroI_7DGAkoA
If you want to swap your rows with columns & columns with rows then try the transpose method of pandas:
df.T
Check the reference link:
https://note.nkmk.me/en/python-pandas-t-transpose/
My current DataFrame is:
Term value
Name
A 1 35
A 2 40
A 3 50
B 1 20
B 2 45
B 3 50
I want to get a dataframe as:
Term 1 2 3
Name
A 35 40 50
B 20 45 50
How can i get it?I've tried using pivot_table but i didn't get my expected output.Is there any way to get my expected output?
Use:
df = df.set_index('Term', append=True)['value'].unstack()
Or:
df = pd.pivot(df.index, df['Term'], df['value'])
print (df)
Term 1 2 3
Name
A 35 40 50
B 20 45 50
EDIT: If duplicates in pairs Name with Term is necessary aggretion, e.g. sum or mean:
df = df.groupby(['Name','Term'])['value'].sum().unstack(fill_value=0)