I have trained my model using Gensim. I draw a 2D plot using PCA but it is not clear too much. I wanna change it to 3D with capable of zooming .my result is so dense.
from sklearn.decomposition import PCA
from matplotlib import pyplot
X=model[model.wv.vocab]
pca=PCA(n_components=2)
result=pca.fit_transform(X)
pyplot.scatter(result[:,0],result[:,1])
word=list(model.wv.most_similar('eden_lake'))
for i, word in enumerate(words):
pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))
pyplot.show()
And the result:
it possible to do that?
The following function uses t-SNE instead of PCA for dimension reduction, but will generate a plot in two, three or both two and three dimensions (using subplots). Furthermore, it will color the topics for you so it's easier to distinguish them. Adding %matplotlib notebook to the start of a Jupyter notebook environment from anaconda will allow a 3d plot to be rotated and a 2d plot to be zoomed (don't do both versions at the same time with %matplotlib notebook).
The function is very long, with most of the code being for plot formatting, but produces a professional output.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import seaborn as sns
from gensim.models import LdaModel
from gensim import corpora
from sklearn.manifold import TSNE
# %matplotlib notebook # if in Jupyter for rotating and zooming
def LDA_tSNE_topics_vis(dimension='both',
corpus=None,
num_topics=10,
remove_3d_outliers=False,
save_png=False):
"""
Returns the outputs of an LDA model plotted using t-SNE (t-distributed Stochastic Neighbor Embedding)
Note: t-SNE reduces the dimensionality of a space such that similar points will be closer and dissimilar points farther
Parameters
----------
dimension : str (default=both)
The dimension that t-SNE should reduce the data to for visualization
Options: 2d, 3d, and both (a plot with two subplots)
corpus : list, list of lists
The tokenized and cleaned text corpus over which analysis should be done
num_topics : int (default=10)
The number of categories for LDA based approaches
remove_3d_outliers : bool (default=False)
Whether to remove outliers from a 3d plot
save_png : bool (default=False)
Whether to save the figure as a png
Returns
-------
A t-SNE lower dimensional representation of an LDA model's topics and their constituent members
"""
dirichlet_dict = corpora.Dictionary(corpus)
bow_corpus = [dirichlet_dict.doc2bow(text) for text in corpus]
dirichlet_model = LdaModel(corpus=bow_corpus,
id2word=dirichlet_dict,
num_topics=num_topics,
update_every=1,
chunksize=len(bow_corpus),
passes=10,
alpha='auto',
random_state=42) # set for testing
df_topic_coherences = pd.DataFrame(columns = ['topic_{}'.format(i) for i in range(num_topics)])
for i in range(len(bow_corpus)):
df_topic_coherences.loc[i] = [0] * num_topics
output = dirichlet_model.__getitem__(bow=bow_corpus[i], eps=0)
for j in range(len(output)):
topic_num = output[j][0]
coherence = output[j][1]
df_topic_coherences.iloc[i, topic_num] = coherence
for i in range(num_topics):
df_topic_coherences.iloc[:, i] = df_topic_coherences.iloc[:, i].astype('float64', copy=False)
df_topic_coherences['main_topic'] = df_topic_coherences.iloc[:, :num_topics].idxmax(axis=1)
if num_topics > 10:
# cubehelix better for more than 10 colors
colors = sns.color_palette("cubehelix", num_topics)
else:
# The default sns color palette
colors = sns.color_palette('deep', num_topics)
tsne_2 = None
tsne_3 = None
if dimension == 'both':
tsne_2 = TSNE(n_components=2, perplexity=40, n_iter=300)
tsne_3 = TSNE(n_components=3, perplexity=40, n_iter=300)
elif dimension == '2d':
tsne_2 = TSNE(n_components=2, perplexity=40, n_iter=300)
elif dimension == '3d':
tsne_3 = TSNE(n_components=3, perplexity=40, n_iter=300)
else:
ValueError("An invalid value has been passed to the 'dimension' argument - choose from 2d, 3d, or both.")
if tsne_2 is not None:
tsne_results_2 = tsne_2.fit_transform(df_topic_coherences.iloc[:, :num_topics])
df_tsne_2 = pd.DataFrame()
df_tsne_2['tsne-2d-d1'] = tsne_results_2[:,0]
df_tsne_2['tsne-2d-d2'] = tsne_results_2[:,1]
df_tsne_2['main_topic'] = df_topic_coherences.iloc[:, num_topics]
df_tsne_2['color'] = [colors[int(t.split('_')[1])] for t in df_tsne_2['main_topic']]
df_tsne_2['topic_num'] = [int(i.split('_')[1]) for i in df_tsne_2['main_topic']]
df_tsne_2 = df_tsne_2.sort_values(['topic_num'], ascending = True).drop('topic_num', axis=1)
if tsne_3 is not None:
colors = [c for c in sns.color_palette()]
tsne_results_3 = tsne_3.fit_transform(df_topic_coherences.iloc[:, :num_topics])
df_tsne_3 = pd.DataFrame()
df_tsne_3['tsne-3d-d1'] = tsne_results_3[:,0]
df_tsne_3['tsne-3d-d2'] = tsne_results_3[:,1]
df_tsne_3['tsne-3d-d3'] = tsne_results_3[:,2]
df_tsne_3['main_topic'] = df_topic_coherences.iloc[:, num_topics]
df_tsne_3['color'] = [colors[int(t.split('_')[1])] for t in df_tsne_3['main_topic']]
df_tsne_3['topic_num'] = [int(i.split('_')[1]) for i in df_tsne_3['main_topic']]
df_tsne_3 = df_tsne_3.sort_values(['topic_num'], ascending = True).drop('topic_num', axis=1)
if remove_3d_outliers:
# Remove those rows with values that are more than three standard deviations from the column mean
for col in ['tsne-3d-d1', 'tsne-3d-d2', 'tsne-3d-d3']:
df_tsne_3 = df_tsne_3[np.abs(df_tsne_3[col] - df_tsne_3[col].mean()) <= (3 * df_tsne_3[col].std())]
if tsne_2 is not None and tsne_3 is not None:
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, # pylint: disable=unused-variable
figsize=(20,10))
ax1.axis('off')
else:
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(20,10))
if tsne_2 is not None and tsne_3 is not None:
# Plot tsne_2, with tsne_3 being added later
ax1 = sns.scatterplot(data=df_tsne_2, x="tsne-2d-d1", y="tsne-2d-d2",
hue=df_topic_coherences.iloc[:, num_topics], alpha=0.3)
light_grey_tup = (242/256, 242/256, 242/256)
ax1.set_facecolor(light_grey_tup)
ax1.axes.set_title('t-SNE 2-Dimensional Representation', fontsize=25)
ax1.set_xlabel('tsne-d1', fontsize=20)
ax1.set_ylabel('tsne-d2', fontsize=20)
handles, labels = ax1.get_legend_handles_labels()
legend_order = list(np.argsort([i.split('_')[1] for i in labels]))
ax1.legend([handles[i] for i in legend_order], [labels[i] for i in legend_order],
facecolor=light_grey_tup)
elif tsne_2 is not None:
# Plot just tsne_2
ax = sns.scatterplot(data=df_tsne_2, x="tsne-2d-d1", y="tsne-2d-d2",
hue=df_topic_coherences.iloc[:, num_topics], alpha=0.3)
ax.set_facecolor(light_grey_tup)
ax.axes.set_title('t-SNE 2-Dimensional Representation', fontsize=25)
ax.set_xlabel('tsne-d1', fontsize=20)
ax.set_ylabel('tsne-d2', fontsize=20)
handles, labels = ax.get_legend_handles_labels()
legend_order = list(np.argsort([i.split('_')[1] for i in labels]))
ax.legend([handles[i] for i in legend_order], [labels[i] for i in legend_order],
facecolor=light_grey_tup)
if tsne_2 is not None and tsne_3 is not None:
# tsne_2 has been plotted, so add tsne_3
ax2 = fig.add_subplot(121, projection='3d')
ax2.scatter(xs=df_tsne_3['tsne-3d-d1'],
ys=df_tsne_3['tsne-3d-d2'],
zs=df_tsne_3['tsne-3d-d3'],
c=df_tsne_3['color'],
alpha=0.3)
ax2.set_facecolor('white')
ax2.axes.set_title('t-SNE 3-Dimensional Representation', fontsize=25)
ax2.set_xlabel('tsne-d1', fontsize=20)
ax2.set_ylabel('tsne-d2', fontsize=20)
ax2.set_zlabel('tsne-d3', fontsize=20)
with plt.rc_context({"lines.markeredgewidth" : 0}):
# Add handles via blank lines and order their colors to match tsne_2
proxy_handles = [Line2D([0], [0], linestyle="none", marker='o', markersize=8,
markerfacecolor=colors[i]) for i in legend_order]
ax2.legend(proxy_handles, ['topic_{}'.format(i) for i in range(num_topics)],
loc='upper left', facecolor=(light_grey_tup))
elif tsne_3 is not None:
# Plot just tsne_3
ax.axis('off')
ax.set_facecolor('white')
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xs=df_tsne_3['tsne-3d-d1'],
ys=df_tsne_3['tsne-3d-d2'],
zs=df_tsne_3['tsne-3d-d3'],
c=df_tsne_3['color'],
alpha=0.3)
ax.set_facecolor('white')
ax.axes.set_title('t-SNE 3-Dimensional Representation', fontsize=25)
ax.set_xlabel('tsne-d1', fontsize=20)
ax.set_ylabel('tsne-d2', fontsize=20)
ax.set_zlabel('tsne-d3', fontsize=20)
with plt.rc_context({"lines.markeredgewidth" : 0}):
# Add handles via blank lines
proxy_handles = [Line2D([0], [0], linestyle="none", marker='o', markersize=8,
markerfacecolor=colors[i]) for i in range(len(colors))]
ax.legend(proxy_handles, ['topic_{}'.format(i) for i in range(num_topics)],
loc='upper left', facecolor=light_grey_tup)
if save_png:
plt.savefig('LDA_tSNE_{}.png'.format(time.strftime("%Y%m%d-%H%M%S")), bbox_inches='tight', dpi=500)
plt.show()
An example plot for both 2d and 3d (with outliers removed) representations of a 10 topic gensim LDA model on subplots would be:
Yes, in principle it is possible to do 3D visualization of LDA model results. Here is more information about using T-SNE for that.
Related
I have a dataset composed of data with the same unit of measurement. Before making my pca, I centered my data using sklearn.preprocessing.StandardScaler(with_std=False).
I don't understand why but using the sklearn.decomposition.PCA.fit_transform(<my_dataframe>) method when I want to display a correlation circle I get two perfectly represented orthogonal variables, thus indicating that they are independent, but they are not. With a correlation matrix I observe perfectly that they are anti-correlated.
Through dint of research I came across the "prince" package which manages to get the perfect coordinates of my centered but unscaled variables.
When I do my pca with it, I can perfectly display the projection of my lines. It also has the advantage of being able to display ellipses. The only problem is that there is no function for a bibplot.
I managed to display a circle of correlations using the column_correlations() method to get the coordinates of the variables. By tinkering here is what I managed to get:
When I try to put my two graphs together to form a biplot, my scatter plot is displayed in a scale that is way too large compared to the correlation circle.
I would just like to merge the two charts together using this package.
Here is the code that allowed me to get the graph showing row principal coordinates:
Note: In order to propose a model to reproduce I use the iris dataset, resembling in form to my dataset.
import pandas as pd
import prince
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']
dataset = pd.read_csv(url, names=names)
dataset = dataset.set_index('Class')
sc = StandardScaler(with_std=False)
dataset = pd.DataFrame(sc.fit_transform(dataset),
index=dataset.index,
columns=dataset.columns)
prince_pca = prince.PCA(n_components=2,
n_iter=3,
rescale_with_mean=True,
rescale_with_std=False,
copy=True,
check_input=True,
engine='auto',
random_state=42)
prince_pca = prince_pca.fit(dataset)
ax = prince_pca.plot_row_coordinates(dataset,
ax=None,
figsize=(10, 10),
x_component=0,
y_component=1,
labels=None,
color_labels=dataset.index,
ellipse_outline=True,
ellipse_fill=True,
show_points=True)
plt.show()
Here's the one I tinkered with to get my circle of correlations:
pcs = prince_pca.column_correlations(dataset)
pcs_0=pcs[0].to_numpy()
pcs_1=pcs[1].to_numpy()
pcs_coord = np.concatenate((pcs_0, pcs_1))
fig = plt.subplots(figsize=(10,10))
plt.xlim(-1,1)
plt.ylim(-1,1)
plt.quiver(np.zeros(pcs_0.shape[0]), np.zeros(pcs_1.shape[0]),
pcs_coord[:4], pcs_coord[4:], angles='xy', scale_units='xy', scale=1, color='r', width= 0.003)
for i, (x, y) in enumerate(zip(pcs_coord[:4], pcs_coord[4:])):
plt.text(x, y, pcs.index[i], fontsize=12)
circle = plt.Circle((0,0), 1, facecolor='none', edgecolor='b')
plt.gca().add_artist(circle)
plt.plot([-1,1],[0,0],color='silver',linestyle='--',linewidth=1)
plt.plot([0,0],[-1,1],color='silver',linestyle='--',linewidth=1)
plt.title("Correlation circle of variable", fontsize=22)
plt.xlabel('F{} ({}%)'.format(1, round(100*prince_pca.explained_inertia_[0],1)),
fontsize=14)
plt.ylabel('F{} ({}%)'.format(2, round(100*prince_pca.explained_inertia_[1],1)),
fontsize=14)
plt.show()
And finally here is the one that tries to bring together the circle of correlations as well as the main row coordinates graph from the "prince" package:
pcs = prince_pca.column_correlations(dataset)
pcs_0 = pcs[0].to_numpy()
pcs_1 = pcs[1].to_numpy()
pcs_coord = np.concatenate((pcs_0, pcs_1))
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, aspect="equal")
plt.xlim(-1, 1)
plt.ylim(-1, 1)
plt.quiver(np.zeros(pcs_0.shape[0]),
np.zeros(pcs_1.shape[0]),
pcs_coord[:4],
pcs_coord[4:],
angles='xy',
scale_units='xy',
scale=1,
color='r',
width=0.003)
for i, (x, y) in enumerate(zip(pcs_coord[:4], pcs_coord[4:])):
plt.text(x, y, pcs.index[i], fontsize=12)
plt.scatter(
x=prince_pca.row_coordinates(dataset)[0],
y=prince_pca.row_coordinates(dataset)[1])
circle = plt.Circle((0, 0), 1, facecolor='none', edgecolor='b')
plt.gca().add_artist(circle)
plt.plot([-1, 1], [0, 0], color='silver', linestyle='--', linewidth=1)
plt.plot([0, 0], [-1, 1], color='silver', linestyle='--', linewidth=1)
plt.title("Correlation circle of variable", fontsize=22)
plt.xlabel('F{} ({}%)'.format(1,
round(100 * prince_pca.explained_inertia_[0],
1)),
fontsize=14)
plt.ylabel('F{} ({}%)'.format(2,
round(100 * prince_pca.explained_inertia_[1],
1)),
fontsize=14)
plt.show()
Bonus question: how to explain that the PCA class of sklearn does not calculate the correct coordinates for my variables when they are centered but not scaled? Any method to overcome this?
Here is the circle of correlations obtained by creating the pca object with sklearn where the "length" and "margin_low" variables appear as orthogonal:
Here is the correlation matrix demonstrating the negative correlation between the "length" and "margin_low" variables:
I managed to mix the two graphs.
Here is the code to display the graph combining the circle of correlations and the scatter with the rows:
import pandas as pd
import prince
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
# Import dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
# Preparing the dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']
dataset = pd.read_csv(url, names=names)
dataset = dataset.set_index('Class')
# Preprocessing: centered but not scaled
sc = StandardScaler(with_std=False)
dataset = pd.DataFrame(sc.fit_transform(dataset),
index=dataset.index,
columns=dataset.columns)
# PCA setting
prince_pca = prince.PCA(n_components=2,
n_iter=3,
rescale_with_mean=True,
rescale_with_std=False,
copy=True,
check_input=True,
engine='auto',
random_state=42)
# PCA fiting
prince_pca = prince_pca.fit(dataset)
# Component coordinates
pcs = prince_pca.column_correlations(dataset)
# Row coordinates
pca_row_coord = prince_pca.row_coordinates(dataset).to_numpy()
# Preparing the colors for parameter 'c'
colors = dataset.T
# Display row coordinates
ax = prince_pca.plot_row_coordinates(dataset,
figsize=(12, 12),
x_component=0,
y_component=1,
labels=None,
color_labels=dataset.index,
ellipse_outline=True,
ellipse_fill=True,
show_points=True)
# We plot the vectors
plt.quiver(np.zeros(pcs.to_numpy().shape[0]),
np.zeros(pcs.to_numpy().shape[0]),
pcs[0],
pcs[1],
angles='xy',
scale_units='xy',
scale=1,
color='r',
width=0.003)
# Display the names of the variables
for i, (x, y) in enumerate(zip(pcs[0], pcs[1])):
if x >= xmin and x <= xmax and y >= ymin and y <= ymax:
plt.text(x,
y,
prince_pca.column_correlations(dataset).index[i],
fontsize=16,
ha="center",
va="bottom",
color="red")
# Display a circle
circle = plt.Circle((0, 0),
1,
facecolor='none',
edgecolor='orange',
linewidth=1)
plt.gca().add_artist(circle)
# Title
plt.title("Row principal coordinates and circle of correlations", fontsize=22)
# Display the percentage of inertia on each axis
plt.xlabel('F{} ({}%)'.format(1,
round(100 * prince_pca.explained_inertia_[0],
1)),
fontsize=14)
plt.ylabel('F{} ({}%)'.format(2,
round(100 * prince_pca.explained_inertia_[1],
1)),
fontsize=14)
# Display the grid to better read the values of the circle of correlations
plt.grid(visible=True)
plt.show()
So, here is my code:
import pandas as pd
import scipy.stats as st
import matplotlib.pyplot as plt
from matplotlib.ticker import AutoMinorLocator
from fitter import Fitter, get_common_distributions
df = pd.read_csv("project3.csv")
bins = [282.33, 594.33, 906.33, 1281.33, 15030.33, 1842.33, 2154.33, 2466.33, 2778.33, 3090.33, 3402.33]
#declaring
facecolor = '#EAEAEA'
color_bars = '#3475D0'
txt_color1 = '#252525'
txt_color2 = '#004C74'
fig, ax = plt.subplots(1, figsize=(16, 6), facecolor=facecolor)
ax.set_facecolor(facecolor)
n, bins, patches = plt.hist(df.City1, color=color_bars, bins=10)
#grid
minor_locator = AutoMinorLocator(2)
plt.gca().xaxis.set_minor_locator(minor_locator)
plt.grid(which='minor', color=facecolor, lw = 0.5)
xticks = [(bins[idx+1] + value)/2 for idx, value in enumerate(bins[:-1])]
xticks_labels = [ "{:.0f}-{:.0f}".format(value, bins[idx+1]) for idx, value in enumerate(bins[:-1])]
plt.xticks(xticks, labels=xticks_labels, c=txt_color1, fontsize=13)
#beautify
ax.tick_params(axis='x', which='both',length=0)
plt.yticks([])
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
for idx, value in enumerate(n):
if value > 0:
plt.text(xticks[idx], value+5, int(value), ha='center', fontsize=16, c=txt_color1)
plt.title('Histogram of rainfall in City1\n', loc = 'right', fontsize = 20, c=txt_color1)
plt.xlabel('\nCentimeters of rainfall', c=txt_color2, fontsize=14)
plt.ylabel('Frequency of occurrence', c=txt_color2, fontsize=14)
plt.tight_layout()
#plt.savefig('City1_Raw.png', facecolor=facecolor)
plt.show()
city1 = df['City1'].values
f = Fitter(city1, distributions=get_common_distributions())
f.fit()
fig = f.plot_pdf(names=None, Nbest=4, lw=1, method='sumsquare_error')
plt.show()
print(f.get_best(method = 'sumsquare_error'))
The issue is with the plots it shows. The first histogram it generates is
Next I get another graph with best fitted distributions which is
Then an output statement
{'chi2': {'df': 10.692966790090342, 'loc': 16.690849400411103, 'scale': 118.71595997157786}}
Process finished with exit code 0
I have a couple of questions. Why is chi2, the best fitted distribution not plotted on the graph?
How do I plot these distributions on top of the histograms and not separately? The hist() function in fitter library can do that but there I don't get to control the bins and so I end up getting like 100 bins with some flat looking data.
How do I solve this issue? I need to plot the best fit curve on the histogram that looks like image1. Can I use any other module/package to get the work done in similar way? This uses least squares fit but I am OK with least likelihood or log likelihood too.
Simple way of plotting things on top of each other (using some properties of the Fitter class)
import scipy.stats as st
import matplotlib.pyplot as plt
from fitter import Fitter, get_common_distributions
from scipy import stats
numberofpoints=50000
df = stats.norm.rvs( loc=1090, scale=500, size=numberofpoints)
fig, ax = plt.subplots(1, figsize=(16, 6))
n, bins, patches = ax.hist( df, bins=30, density=True)
f = Fitter(df, distributions=get_common_distributions())
f.fit()
errorlist = sorted(
[
[f._fitted_errors[dist], dist]
for dist in get_common_distributions()
]
)[:4]
for err, dist in errorlist:
ax.plot( f.x, f.fitted_pdf[dist] )
plt.show()
Using the histogram normalization, one would need to play with scaling to generalize again.
I have loaded and plotted a FITS file in python.
With the help of a previous post, I have managed to get the conversion of the axis from pixels to celestial coordinates. But I can't manage to get them in milliarcseconds (mas) correctly.
The code is the following
import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.wcs import WCS
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
filename = get_pkg_data_filename('hallo.fits')
hdu = fits.open(filename)[0]
wcs = WCS(hdu.header).celestial
wcs.wcs.crval = [0,0]
plt.subplot(projection=wcs)
plt.imshow(hdu.data[0][0], origin='lower')
plt.xlim(200,800)
plt.ylim(200,800)
plt.xlabel('Relative R.A ()')
plt.ylabel('Relative Dec ()')
plt.colorbar()
The output looks like
The y-label is cut for some reason, I do not know.
As it was shown in another post, one could use
wcs.wcs.ctype = [ 'XOFFSET' , 'YOFFSET' ]
to switch it to milliarcsecond, and I get
but the scale is incorrect!.
For instance, 0deg00min00.02sec should be 20 mas and not 0.000002!
Did I miss something here?
Looks like a spectral index map. Nice!
I think the issue might be that FITS implicitly uses degrees for values like CDELT. And they should be converted to mas explicitly for the plot.
The most straightforward way is to multiply CDELT values by 3.6e6 to convert from degrees to mas.
However, there is a more general approach which could be useful if you want to convert to different units at some point:
import astropy.units as u
w.wcs.cdelt = (w.wcs.cdelt * u.deg).to(u.mas)
So it basically says first that the units of CDELT are degrees and then converts them to mas.
The whole workflow is like this:
def make_transform(f):
'''use already read-in FITS file object f to build pixel-to-mas transformation'''
print("Making a transformation out of a FITS header")
w = WCS(f[0].header)
w = w.celestial
w.wcs.crval = [0, 0]
w.wcs.ctype = [ 'XOFFSET' , 'YOFFSET' ]
w.wcs.cunit = ['mas' , 'mas']
w.wcs.cdelt = (w.wcs.cdelt * u.deg).to(u.mas)
print(w.world_axis_units)
return w
def read_fits(file):
'''read fits file into object'''
try:
res = fits.open(file)
return res
except:
return None
def start_plot(i,df=None, w=None, xlim = [None, None], ylim=[None, None]):
'''starts a plot and returns fig,ax .
xlim, ylim - axes limits in mas
'''
# make a transformation
# Using a dataframe
if df is not None:
w = make_transform_df(df)
# using a header
if w is not None:
pass
# not making but using one from the arg list
else:
w = make_transform(i)
# print('In start_plot using the following transformation:\n {}'.format(w))
fig = plt.figure()
if w.naxis == 4:
ax = plt.subplot(projection = w, slices = ('x', 'y', 0 ,0 ))
elif w.naxis == 2:
ax = plt.subplot(projection = w)
# convert xlim, ylim to coordinates of BLC and TRC, perform transformation, then return back to xlim, ylim in pixels
if any(xlim) and any(ylim):
xlim_pix, ylim_pix = limits_mas2pix(xlim, ylim, w)
ax.set_xlim(xlim_pix)
ax.set_ylim(ylim_pix)
fig.add_axes(ax) # note that the axes have to be explicitly added to the figure
return fig, ax
rm = read_fits(file)
wr = make_transform(rm)
fig, ax = start_plot(RM, w=wr, xlim = xlim, ylim = ylim)
Then just plot to the axes ax with imshow or contours or whatever.
Of course, this piece of code could be reduced to meet your particular needs.
Here is my code snippet to produce confusion matrix:
I am wondering how can I change the color of boxes in confusion matrix for those boxes which are not located in diagonal same as heatmap using sklearn.
nb_classes = 15
confusion_matrix = torch.zeros(nb_classes, nb_classes)
with torch.no_grad():
for i, (inputs, target, classes, im_path) in enumerate(dataLoaders['test']):
inputs = inputs.to(device)
target = target.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for t, p in zip(target.view(-1), preds.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
num_classes = 15
class_names = ['A2CH', 'A3CH', 'A4CH_LV', 'A4CH_RV', 'A5CH', 'Apical_MV_LA_IAS',
'OTHER', 'PLAX_TV', 'PLAX_full', 'PLAX_valves', 'PSAX_AV', 'PSAX_LV',
'Subcostal_IVC', 'Subcostal_heart', 'Suprasternal']
plt.figure()
plt.imshow(confusion_matrix, interpolation='nearest', cmap=plt.cm.Blues)
tick_marks = numpy.arange(num_classes)
classNames = class_names
thresh = confusion_matrix.max() / 2.
for i in range(confusion_matrix.shape[0]):
for j in range(confusion_matrix.shape[1]):
plt.text(j, i, format(confusion_matrix[i, j]),
ha="center", va="center",
color="white" if confusion_matrix[i, j] == 0 or confusion_matrix[i, j] > thresh else "black")
plt.tight_layout()
plt.colorbar()
return plt
plt.show()
Use heatmap to plot confusion matrix
import seaborn as sn
import pandas as pd
import matplotlib.pyplot as plt
array = [[33,2,0,0,0,0,0,0,0,1,3],
[3,31,0,0,0,0,0,0,0,0,0],
[0,4,41,0,0,0,0,0,0,0,1],
[0,1,0,30,0,6,0,0,0,0,1],
[0,0,0,0,38,10,0,0,0,0,0],
[0,0,0,3,1,39,0,0,0,0,4],
[0,2,2,0,4,1,31,0,0,0,2],
[0,1,0,0,0,0,0,36,0,2,0],
[0,0,0,0,0,0,1,5,37,5,1],
[3,0,0,0,0,0,0,0,0,39,0],
[0,0,0,0,0,0,0,0,0,0]]
df_cm = pd.DataFrame(array, index = [i for i in "ABCDEFGHIJK"],
columns = [i for i in "ABCDEFGHIJK"])
plt.figure(figsize = (10,7))
sn.heatmap(df_cm, annot=True,cmap="OrRd")
heatmap accept an extra argument cmap to change the color of matrix. These are some possible values for camp.
cmap = [Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r, BuPu,
BuPu_r, CMRmap, CMRmap_r, Dark2, Dark2_r, GnBu, GnBu_r, Greens, Greens_r,
Greys, Greys_r, OrRd, OrRd_r, Oranges, Oranges_r, PRGn, PRGn_r, Paired, Paired_r,
Pastel1, Pastel1_r, Pastel2, Pastel2_r, PiYG, PiYG_r, PuBu, PuBuGn, PuBuGn_r,
PuBu_r, PuOr, PuOr_r, PuRd, PuRd_r, Purples, Purples_r, RdBu, RdBu_r, RdGy, RdGy_r,
RdPu, RdPu_r, RdYlBu, RdYlBu_r, RdYlGn, RdYlGn_r, Reds, Reds_r, Set1, Set1_r,
Set2, Set2_r, Set3, Set3_r, Spectral, Spectral_r, Wistia, Wistia_r, YlGn, YlGnBu,
YlGnBu_r, YlGn_r, YlOrBr, YlOrBr_r, YlOrRd, YlOrRd_r, afmhot, afmhot_r, autumn,
autumn_r, binary, binary_r, bone, bone_r, brg, brg_r, bwr, bwr_r, cividis,
cividis_r, cool, cool_r, coolwarm, coolwarm_r, copper, copper_r, cubehelix,
cubehelix_r, flag, flag_r, gist_earth, gist_earth_r, gist_gray, gist_gray_r,
gist_heat, gist_heat_r, gist_ncar, gist_ncar_r, gist_rainbow, gist_rainbow_r,
gist_stern, gist_stern_r, gist_yarg, gist_yarg_r, gnuplot, gnuplot2, gnuplot2_r,
gnuplot_r, gray, gray_r, hot, hot_r, hsv, hsv_r, icefire, icefire_r, inferno,
inferno_r, jet, jet_r, magma, magma_r, mako, mako_r, nipy_spectral, nipy_spectral_r,
ocean, ocean_r, pink, pink_r, plasma, plasma_r, prism, prism_r, rainbow, rainbow_r,
rocket, rocket_r, seismic, seismic_r, spring, spring_r, summer, summer_r, tab10,
tab10_r, tab20, tab20_r, tab20b, tab20b_r, tab20c, tab20c_r, terrain, terrain_r,
viridis, viridis_r, vlag, vlag_r, winter, winter_r]
cmap = "OrRd"
cmap = "Greens_r"
cmap = "OrRd_r"
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
you can change a name in cmap=plt.cm.Blues as the color you want such as green, red, orange, etc. Don't forget to add s in every word of colors. In addition, there are two default forms of each confusion matrix color. For example, it is green.
Greens. it is for green color in diagonal line.
Greens_r. It is for green color outside of diagonal line.
I found this wonderful graph in post here Variation on "How to plot decision boundary of a k-nearest neighbor classifier from Elements of Statistical Learning?". In this example K-NN is used to clasify data into three classes. I especially enjoy that it features the probability of class membership as a indication of the "confidence".
r and ggplot seem to do a great job.I wonder, whether this can be re-created in python? My initial thought tends to scikit-learn and matplotlib. Here is the iris example from scikit:
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets
n_neighbors = 15
# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target
h = .02 # step size in the mesh
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
for weights in ['uniform', 'distance']:
# we create an instance of Neighbours Classifier and fit the data.
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')"
% (n_neighbors, weights))
plt.show()
This produces a graph in a sense very similar:
I have three questions:
How can I introduce the confidence to the plot?
How can I plot the decision-boundaries with a connected line?
Let's say I have a new observation, how can I introduce it to the plot and plot if it is classified correctly?
I stumbled upon your question about a year ago, and loved the plot -- I just never got around to answering it, until now. Hopefully the code comments below are self-explanitory enough (I also blogged about, if you want more details). Maybe four years too late, haha.
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from matplotlib.lines import Line2D
from matplotlib.ticker import MaxNLocator
from sklearn import neighbors
iris = datasets.load_iris()
x = iris.data[:,0:2]
y = iris.target
# create the x0, x1 feature
x0 = x[:,0]
x1 = x[:,1]
# set main parameters for KNN plot
N_NEIGHBORS = 15 # KNN number of neighbors
H = 0.1 # mesh stepsize
PROB_DOT_SCALE = 40 # modifier to scale the probability dots
PROB_DOT_SCALE_POWER = 3 # exponential used to increase/decrease size of prob dots
TRUE_DOT_SIZE = 50 # size of the true labels
PAD = 1.0 # how much to "pad" around the true labels
clf = neighbors.KNeighborsClassifier(N_NEIGHBORS, weights='uniform')
clf.fit(x, y)
# find the min/max points for both x0 and x1 features
# these min/max values will be used to set the bounds
# for the plot
x0_min, x0_max = np.round(x0.min())-PAD, np.round(x0.max()+PAD)
x1_min, x1_max = np.round(x1.min())-PAD, np.round(x1.max()+PAD)
# create 1D arrays representing the range of probability data points
# on both the x0 and x1 axes.
x0_axis_range = np.arange(x0_min,x0_max, H)
x1_axis_range = np.arange(x1_min,x1_max, H)
# create meshgrid between the two axis ranges
xx0, xx1 = np.meshgrid(x0_axis_range, x1_axis_range)
# put the xx in the same dimensional format as the original x
# because it's easier to work with that way (at least for me)
# * shape will be: [no_dots, no_dimensions]
# where no_dimensions = 2 (x0 and x1 axis)
xx = np.reshape(np.stack((xx0.ravel(),xx1.ravel()),axis=1),(-1,2))
yy_hat = clf.predict(xx) # prediction of all the little dots
yy_prob = clf.predict_proba(xx) # probability of each dot being
# the predicted color
yy_size = np.max(yy_prob, axis=1)
# make figure
plt.style.use('seaborn-whitegrid') # set style because it looks nice
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8,6), dpi=150)
# establish colors and colormap
# * color blind colors, from
# https://towardsdatascience.com/two-simple-steps-to-create-colorblind-friendly-data-visualizations-2ed781a167ec
redish = '#d73027'
orangeish = '#fc8d59'
yellowish = '#fee090'
blueish = '#4575b4'
colormap = np.array([redish,blueish,orangeish])
# plot all the little dots, position defined by the xx values, color
# defined by the knn predictions (yy_hat), and size defined by the
# probability of that color (yy_prob)
# * because the yy_hat values are either 0, 1, 2, we can use
# these as values to index into the colormap array
# * size of dots (the probability) increases exponentially (^3), so that there is
# a nice difference between different probabilities. I'm sure there is a more
# elegant way to do this though...
# * linewidths=0 so that there are no "edges" around the dots
ax.scatter(xx[:,0], xx[:,1], c=colormap[yy_hat], alpha=0.4,
s=PROB_DOT_SCALE*yy_size**PROB_DOT_SCALE_POWER, linewidths=0,)
# plot the contours
# * we have to reshape the yy_hat to get it into a
# 2D dimensional format, representing both the x0
# and x1 axis
# * the number of levels and color scheme was manually tuned
# to make sense for this data. Would probably change, for
# instance, if there were 4, or 5 (etc.) classes
ax.contour(x0_axis_range, x1_axis_range,
np.reshape(yy_hat,(xx0.shape[0],-1)),
levels=3, linewidths=1,
colors=[redish,blueish, blueish,orangeish,])
# plot the original x values.
# * zorder is 3 so that the dots appear above all the other dots
ax.scatter(x[:,0], x[:,1], c=colormap[y], s=TRUE_DOT_SIZE, zorder=3,
linewidths=0.7, edgecolor='k')
# create legends
x_min, x_max = ax.get_xlim()
y_min, y_max = ax.get_ylim()
# set x-y labels
ax.set_ylabel(r"$x_1$")
ax.set_xlabel(r"$x_0$")
# create class legend
# Line2D properties: https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
# about size of scatter plot points: https://stackoverflow.com/a/47403507/9214620
legend_class = []
for flower_class, color in zip(['c', 's', 'v'], [blueish, redish, orangeish]):
legend_class.append(Line2D([0], [0], marker='o', label=flower_class,ls='None',
markerfacecolor=color, markersize=np.sqrt(TRUE_DOT_SIZE),
markeredgecolor='k', markeredgewidth=0.7))
# iterate over each of the probabilities to create prob legend
prob_values = [0.4, 0.6, 0.8, 1.0]
legend_prob = []
for prob in prob_values:
legend_prob.append(Line2D([0], [0], marker='o', label=prob, ls='None', alpha=0.8,
markerfacecolor='grey',
markersize=np.sqrt(PROB_DOT_SCALE*prob**PROB_DOT_SCALE_POWER),
markeredgecolor='k', markeredgewidth=0))
legend1 = ax.legend(handles=legend_class, loc='center',
bbox_to_anchor=(1.05, 0.35),
frameon=False, title='class')
legend2 = ax.legend(handles=legend_prob, loc='center',
bbox_to_anchor=(1.05, 0.65),
frameon=False, title='prob', )
ax.add_artist(legend1) # add legend back after it disappears
ax.set_yticks(np.arange(x1_min,x1_max, 1)) # I don't like the decimals
ax.grid(False) # remove gridlines (inherited from 'seaborn-whitegrid' style)
# only use integers for axis tick labels
# from: https://stackoverflow.com/a/34880501/9214620
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
# set the aspect ratio to 1, for looks
ax.set_aspect(1)
# remove first ticks from axis labels, for looks
# from: https://stackoverflow.com/a/19503828/9214620
ax.set_xticks(ax.get_xticks()[1:-1])
ax.set_yticks(np.arange(x1_min,x1_max, 1)[1:])
plt.show()