How to send a GraphQL query to AppSync from python? - python-3.x

How do we post a GraphQL request through AWS AppSync using boto?
Ultimately I'm trying to mimic a mobile app accessing our stackless/cloudformation stack on AWS, but with python. Not javascript or amplify.
The primary pain point is authentication; I've tried a dozen different ways already. This the current one, which generates a "401" response with "UnauthorizedException" and "Permission denied", which is actually pretty good considering some of the other messages I've had. I'm now using the 'aws_requests_auth' library to do the signing part. I assume it authenticates me using the stored /.aws/credentials from my local environment, or does it?
I'm a little confused as to where and how cognito identities and pools will come into it. eg: say I wanted to mimic the sign-up sequence?
Anyways the code looks pretty straightforward; I just don't grok the authentication.
from aws_requests_auth.boto_utils import BotoAWSRequestsAuth
APPSYNC_API_KEY = 'inAppsyncSettings'
APPSYNC_API_ENDPOINT_URL = 'https://aaaaaaaaaaaavzbke.appsync-api.ap-southeast-2.amazonaws.com/graphql'
headers = {
'Content-Type': "application/graphql",
'x-api-key': APPSYNC_API_KEY,
'cache-control': "no-cache",
}
query = """{
GetUserSettingsByEmail(email: "john#washere"){
items {name, identity_id, invite_code}
}
}"""
def test_stuff():
# Use the library to generate auth headers.
auth = BotoAWSRequestsAuth(
aws_host='aaaaaaaaaaaavzbke.appsync-api.ap-southeast-2.amazonaws.com',
aws_region='ap-southeast-2',
aws_service='appsync')
# Create an http graphql request.
response = requests.post(
APPSYNC_API_ENDPOINT_URL,
json={'query': query},
auth=auth,
headers=headers)
print(response)
# this didn't work:
# response = requests.post(APPSYNC_API_ENDPOINT_URL, data=json.dumps({'query': query}), auth=auth, headers=headers)
Yields
{
"errors" : [ {
"errorType" : "UnauthorizedException",
"message" : "Permission denied"
} ]
}

It's quite simple--once you know. There are some things I didn't appreciate:
I've assumed IAM authentication (OpenID appended way below)
There are a number of ways for appsync to handle authentication. We're using IAM so that's what I need to deal with, yours might be different.
Boto doesn't come into it.
We want to issue a request like any regular punter, they don't use boto, and neither do we. Trawling the AWS boto docs was a waste of time.
Use the AWS4Auth library
We are going to send a regular http request to aws, so whilst we can use python requests they need to be authenticated--by attaching headers.
And, of course, AWS auth headers are special and different from all others.
You can try to work out how to do it
yourself, or you can go looking for someone else who has already done it: Aws_requests_auth, the one I started with, probably works just fine, but I have ended up with AWS4Auth. There are many others of dubious value; none endorsed or provided by Amazon (that I could find).
Specify appsync as the "service"
What service are we calling? I didn't find any examples of anyone doing this anywhere. All the examples are trivial S3 or EC2 or even EB which left uncertainty. Should we be talking to api-gateway service? Whatsmore, you feed this detail into the AWS4Auth routine, or authentication data. Obviously, in hindsight, the request is hitting Appsync, so it will be authenticated by Appsync, so specify "appsync" as the service when putting together the auth headers.
It comes together as:
import requests
from requests_aws4auth import AWS4Auth
# Use AWS4Auth to sign a requests session
session = requests.Session()
session.auth = AWS4Auth(
# An AWS 'ACCESS KEY' associated with an IAM user.
'AKxxxxxxxxxxxxxxx2A',
# The 'secret' that goes with the above access key.
'kwWxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxgEm',
# The region you want to access.
'ap-southeast-2',
# The service you want to access.
'appsync'
)
# As found in AWS Appsync under Settings for your endpoint.
APPSYNC_API_ENDPOINT_URL = 'https://nqxxxxxxxxxxxxxxxxxxxke'
'.appsync-api.ap-southeast-2.amazonaws.com/graphql'
# Use JSON format string for the query. It does not need reformatting.
query = """
query foo {
GetUserSettings (
identity_id: "ap-southeast-2:8xxxxxxb-7xx4-4xx4-8xx0-exxxxxxx2"
){
user_name, email, whatever
}}"""
# Now we can simply post the request...
response = session.request(
url=APPSYNC_API_ENDPOINT_URL,
method='POST',
json={'query': query}
)
print(response.text)
Which yields
# Your answer comes as a JSON formatted string in the text attribute, under data.
{"data":{"GetUserSettings":{"user_name":"0xxxxxxx3-9102-42f0-9874-1xxxxx7dxxx5"}}}
Getting credentials
To get rid of the hardcoded key/secret you can consume the local AWS ~/.aws/config and ~/.aws/credentials, and it is done this way...
# Use AWS4Auth to sign a requests session
session = requests.Session()
credentials = boto3.session.Session().get_credentials()
session.auth = AWS4Auth(
credentials.access_key,
credentials.secret_key,
boto3.session.Session().region_name,
'appsync',
session_token=credentials.token
)
...<as above>
This does seem to respect the environment variable AWS_PROFILE for assuming different roles.
Note that STS.get_session_token is not the way to do it, as it may try to assume a role from a role, depending where it keyword matched the AWS_PROFILE value. Labels in the credentials file will work because the keys are right there, but names found in the config file do not work, as that assumes a role already.
OpenID
In this scenario, all the complexity is transferred to the conversation with the openid connect provider. The hard stuff is all the auth hoops you jump through to get an access token, and thence using the refresh token to keep it alive. That is where all the real work lies.
Once you finally have an access token, assuming you have configured the "OpenID Connect" Authorization Mode in appsync, then you can, very simply, drop the access token into the header:
response = requests.post(
url="https://nc3xxxxxxxxxx123456zwjka.appsync-api.ap-southeast-2.amazonaws.com/graphql",
headers={"Authorization": ACCESS_TOKEN},
json={'query': "query foo{GetStuff{cat, dog, tree}}"}
)

You can set up an API key on the AppSync end and use the code below. This works for my case.
import requests
# establish a session with requests session
session = requests.Session()
# As found in AWS Appsync under Settings for your endpoint.
APPSYNC_API_ENDPOINT_URL = 'https://vxxxxxxxxxxxxxxxxxxy.appsync-api.ap-southeast-2.amazonaws.com/graphql'
# setup the query string (optional)
query = """query listItemsQuery {listItemsQuery {items {correlation_id, id, etc}}}"""
# Now we can simply post the request...
response = session.request(
url=APPSYNC_API_ENDPOINT_URL,
method='POST',
headers={'x-api-key': '<APIKEYFOUNDINAPPSYNCSETTINGS>'},
json={'query': query}
)
print(response.json()['data'])

Building off Joseph Warda's answer you can use the class below to send AppSync commands.
# fileName: AppSyncLibrary
import requests
class AppSync():
def __init__(self,data):
endpoint = data["endpoint"]
self.APPSYNC_API_ENDPOINT_URL = endpoint
self.api_key = data["api_key"]
self.session = requests.Session()
def graphql_operation(self,query,input_params):
response = self.session.request(
url=self.APPSYNC_API_ENDPOINT_URL,
method='POST',
headers={'x-api-key': self.api_key},
json={'query': query,'variables':{"input":input_params}}
)
return response.json()
For example in another file within the same directory:
from AppSyncLibrary import AppSync
APPSYNC_API_ENDPOINT_URL = {YOUR_APPSYNC_API_ENDPOINT}
APPSYNC_API_KEY = {YOUR_API_KEY}
init_params = {"endpoint":APPSYNC_API_ENDPOINT_URL,"api_key":APPSYNC_API_KEY}
app_sync = AppSync(init_params)
mutation = """mutation CreatePost($input: CreatePostInput!) {
createPost(input: $input) {
id
content
}
}
"""
input_params = {
"content":"My first post"
}
response = app_sync.graphql_operation(mutation,input_params)
print(response)
Note: This requires you to activate API access for your AppSync API. Check this AWS post for more details.

graphql-python/gql supports AWS AppSync since version 3.0.0rc0.
It supports queries, mutation and even subscriptions on the realtime endpoint.
The documentation is available here
Here is an example of a mutation using the API Key authentication:
import asyncio
import os
import sys
from urllib.parse import urlparse
from gql import Client, gql
from gql.transport.aiohttp import AIOHTTPTransport
from gql.transport.appsync_auth import AppSyncApiKeyAuthentication
# Uncomment the following lines to enable debug output
# import logging
# logging.basicConfig(level=logging.DEBUG)
async def main():
# Should look like:
# https://XXXXXXXXXXXXXXXXXXXXXXXXXX.appsync-api.REGION.amazonaws.com/graphql
url = os.environ.get("AWS_GRAPHQL_API_ENDPOINT")
api_key = os.environ.get("AWS_GRAPHQL_API_KEY")
if url is None or api_key is None:
print("Missing environment variables")
sys.exit()
# Extract host from url
host = str(urlparse(url).netloc)
auth = AppSyncApiKeyAuthentication(host=host, api_key=api_key)
transport = AIOHTTPTransport(url=url, auth=auth)
async with Client(
transport=transport, fetch_schema_from_transport=False,
) as session:
query = gql(
"""
mutation createMessage($message: String!) {
createMessage(input: {message: $message}) {
id
message
createdAt
}
}"""
)
variable_values = {"message": "Hello world!"}
result = await session.execute(query, variable_values=variable_values)
print(result)
asyncio.run(main())

I am unable to add a comment due to low rep, but I just want to add that I tried the accepted answer and it didn't work. I was getting an error saying my session_token is invalid. Probably because I was using AWS Lambda.
I got it to work pretty much exactly, but by adding to the session token parameter of the aws4auth object. Here's the full piece:
import requests
import os
from requests_aws4auth import AWS4Auth
def AppsyncHandler(event, context):
# These are env vars that are always present in an AWS Lambda function
# If not using AWS Lambda, you'll need to add them manually to your env.
access_id = os.environ.get("AWS_ACCESS_KEY_ID")
secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY")
session_token = os.environ.get("AWS_SESSION_TOKEN")
region = os.environ.get("AWS_REGION")
# Your AppSync Endpoint
api_endpoint = os.environ.get("AppsyncConnectionString")
resource = "appsync"
session = requests.Session()
session.auth = AWS4Auth(access_id,
secret_key,
region,
resource,
session_token=session_token)
The rest is the same.

Hope this Helps Everyone
import requests
import json
import os
from dotenv import load_dotenv
load_dotenv(".env")
class AppSync(object):
def __init__(self,data):
endpoint = data["endpoint"]
self.APPSYNC_API_ENDPOINT_URL = endpoint
self.api_key = data["api_key"]
self.session = requests.Session()
def graphql_operation(self,query,input_params):
response = self.session.request(
url=self.APPSYNC_API_ENDPOINT_URL,
method='POST',
headers={'x-api-key': self.api_key},
json={'query': query,'variables':{"input":input_params}}
)
return response.json()
def main():
APPSYNC_API_ENDPOINT_URL = os.getenv("APPSYNC_API_ENDPOINT_URL")
APPSYNC_API_KEY = os.getenv("APPSYNC_API_KEY")
init_params = {"endpoint":APPSYNC_API_ENDPOINT_URL,"api_key":APPSYNC_API_KEY}
app_sync = AppSync(init_params)
mutation = """
query MyQuery {
getAccountId(id: "5ca4bbc7a2dd94ee58162393") {
_id
account_id
limit
products
}
}
"""
input_params = {}
response = app_sync.graphql_operation(mutation,input_params)
print(json.dumps(response , indent=3))
main()

Related

Adding new endpoint to FastAPI at runtime

I have a API Gateway service based on FastAPI and some specific services (like plugins) to connect with it. One of them - Auth service dealing with user accounts and access-tokens.
For example Auth service wants to tell AG about new functionality he provides and to register new endpoint in AG at runtime.
I see the following steps:
Auth creates new endpoint in AG, /new_endpoint for example;
All the traffic going to http://AG/new_endpoint will be redirected to http://Auth/...
I looked at the method FastAPI.add_api_route to add new endpoint. It works at runtime - I checked using curl.
There is no effect after refreshing http://AG/docs page because OpenAPI schema is cached.
I would like to re-generate OpenAPI schema and see /new_endpoint on the OpenAPI page.
I think I found the solution how to re-generate OpenAPI schema.
Drop cache app.openapi_schema = None
Re-generate schema app.setup()
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from pydantic import BaseModel
app = FastAPI()
class NewEndpointResponse(BaseModel):
status: str
method: str
url_path: str
async def catch_all(request: Request) -> JSONResponse:
"""
Your new endpoint handler
"""
# some logic to interact with Auth-service
# like: requests.get("http://Auth/...")
res = NewEndpointResponse(status="OK", method=request.method, url_path=request.url.path)
return JSONResponse(res.dict(), status_code=200)
class EndpointRegisterDTO(BaseModel):
endpoint: str = "/new_endpoint"
method: str = "GET"
name: str = "Extra Functionality"
#app.post("/register/endpoint")
async def add_endpoint(request: EndpointRegisterDTO):
"""
Adds new endpoint at runtime
"""
app.add_api_route(
request.endpoint,
catch_all,
methods=[request.method],
name=request.name,
response_model=NewEndpointResponse)
app.openapi_schema = None
app.setup()
return {"status": "OK"}
Open http://AG/docs. Only one endpoint is available.
Press "Try it out" and do POST /register/endpoint with suggested parameters.
Refresh http://AG/docs - now you can see /new_endpoint.
Call GET /new_endpoint and check that response is correct.
The solution is ugly a bit, but it works!
I think it's bloody hard to debug it!

Make requests to Google API with Python

I'm trying to make requests to the Google API to create source repositories using a service account and his JSON key file.
Since there are no client libraries for this product, I am using the queries with Python using this documentation
https://cloud.google.com/source-repositories/docs/reference/rest
I already used a similar code to invoke my cloud-functions with success, but this time I'm block for these requests at the 401 error. I set up the GOOGLE_APPLICATION_CREDENTIALS with the JSON of my service account, give the service-account the permissions of Source Repository Administrator, but still return 401.
Here's my code
import urllib.request
import json
import urllib
import google.auth.transport.requests
import google.oauth2.id_token
body = { "name" : "projects/$my_project_name/repos/$name_repo"}
jsondata = json.dumps(body).encode("utf8")
req = urllib.request.Request('https://sourcerepo.googleapis.com/v1/projects/$my_project_name/repos')
req.add_header('Content-Type', 'application/json; charset=utf-8')
auth_req = google.auth.transport.requests.Request()
id_token = google.oauth2.id_token.fetch_id_token(auth_req, 'https://www.googleapis.com/auth/cloud-platform')
req.add_header("Authorization", f"Bearer {id_token}")
response = urllib.request.urlopen(req, jsondata)
print (response.read().decode())
I tried also using the with an API-KEY at the end of the url like this
req = urllib.request.Request('https://sourcerepo.googleapis.com/v1/projects/$my_project_name/repos?key=$my-api-key')
Thank you
I tried also using the with an API-KEY at the end of the url like this
API Keys are not supported.
Your code is using an OIDC Identity Token instead of an OAuth Acess Token.
from google.oauth2 import service_account
credentials = service_account.Credentials.from_service_account_file(
'/path/to/key.json',
scopes=['https://www.googleapis.com/auth/cloud-platform'])
request = google.auth.transport.requests.Request()
credentials.refresh(request)
// Use the following code to add the access token:
req.add_header("Authorization", f"Bearer {credentials.token}")

How do I get id_token to properly load in Cloud Run?

I have a Django app that I have been working on. When I run it locally it runs perfectly. When I run it in a container using Cloud Run I get the following error:
'Credentials' object has no attribute 'id_token'
Here is the offending code (payload is a dictionary object):
def ProcessPayload(payload):
# Get authorized session credentials
credentials, _ = google.auth.default()
session = AuthorizedSession(credentials)
credentials.refresh(Request(session))
# Process post request
headers = {'Authorization': f'Bearer {credentials.id_token}'}
response = requests.post(URL, json=payload, headers=headers)
In my local environment, the refresh properly loads credentials with the correct id_toled for the needed header, but for some reason when the code is deployed to Cloud Run this does not work. I have the Cloud run instance set to use a service account so it should be able to get credentials from it. How do I make this work? I have googled until my fingers hurt and have found no viable solutions.
When executing code under a Compute Service (Compute Engine, Cloud Run, Cloud Functions), call the metadata service to obtain an OIDC Identity Token.
import requests
METADATA_HEADERS = {'Metadata-Flavor': 'Google'}
METADATA_URL = 'http://metadata.google.internal/computeMetadata/v1/' \
'instance/service-accounts/default/identity?' \
'audience={}'
def fetch_identity_token(audience):
# Construct a URL with the audience and format.
url = METADATA_URL.format(audience)
# Request a token from the metadata server.
r = requests.get(url, headers=METADATA_HEADERS)
r.raise_for_status()
return r.text
def ProcessPayload(payload):
id_token = fetch_identity_token('replace_with_service_url')
# Process post request
headers = {'Authorization': f'Bearer {id_token}'}
response = requests.post(URL, json=payload, headers=headers)
The equivalent curl command to fetch an Identity Token looks like this. You can test from a Compute Engine instance:
curl -H "metadata-flavor: Google" \
http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/identity?audience=URL
where URL is the URL of the service you are calling.
Authentication service-to-service
I have seen this metadata URL shortcut (for Cloud Run), but I have not verified it:
http://metadata/instance/service-accounts/default/identity?audience=URL
So, after much playing around I found a solution that works in both places. Many thanks to Paul Bonser for coming up with this simple method!
import google.auth
from google.auth.transport.requests import AuthorizedSession, Request
from google.oauth2.id_token import fetch_id_token
import requests
def GetIdToken(audience):
credentials, _ = google.auth.default()
session = AuthorizedSession(credentials)
request = Request(session)
credentials.refresh(request)
if hasattr(credentials, "id_token"):
return credentials.id_token
return fetch_id_token(request, audience)
def ProcessPayload(url, payload):
# Get the ID Token
id_token = GetIdToken(url)
# Process post request
headers = {'Authorization': f'Bearer {id_token}'}
response = requests.post(url, json=payload, headers=headers)

How to refresh the boto3 credetials when python script is running indefinitely

I am trying to write a python script that uses watchdog to look for file creation and upload that to s3 using boto3. However, my boto3 credentials expire after every 12hrs, So I need to renew them. I am storing my boto3 credentials in ~/.aws/credentials. So right now I am trying to catch the S3UploadFailedError, renew the credentials, and write them to ~/.aws/credentials. But though the credentials are getting renewed and I am calling boto3.client('s3') again its throwing exception.
What am I doing wrong? Or how can I resolve it?
Below is the code snippet
try:
s3 = boto3.client('s3')
s3.upload_file(event.src_path,'bucket-name',event.src_path)
except boto3.exceptions.S3UploadFailedError as e:
print(e)
get_aws_credentials()
s3 = boto3.client('s3')
I have found a good example to refresh the credentials within this link:
https://pritul95.github.io/blogs/boto3/2020/08/01/refreshable-boto3-session/
but there this a little bug inside. Be careful about that.
Here is the corrected code:
from uuid import uuid4
from datetime import datetime
from time import time
from boto3 import Session
from botocore.credentials import RefreshableCredentials
from botocore.session import get_session
class RefreshableBotoSession:
"""
Boto Helper class which lets us create refreshable session, so that we can cache the client or resource.
Usage
-----
session = RefreshableBotoSession().refreshable_session()
client = session.client("s3") # we now can cache this client object without worrying about expiring credentials
"""
def __init__(
self,
region_name: str = None,
profile_name: str = None,
sts_arn: str = None,
session_name: str = None,
session_ttl: int = 3000
):
"""
Initialize `RefreshableBotoSession`
Parameters
----------
region_name : str (optional)
Default region when creating new connection.
profile_name : str (optional)
The name of a profile to use.
sts_arn : str (optional)
The role arn to sts before creating session.
session_name : str (optional)
An identifier for the assumed role session. (required when `sts_arn` is given)
session_ttl : int (optional)
An integer number to set the TTL for each session. Beyond this session, it will renew the token.
50 minutes by default which is before the default role expiration of 1 hour
"""
self.region_name = region_name
self.profile_name = profile_name
self.sts_arn = sts_arn
self.session_name = session_name or uuid4().hex
self.session_ttl = session_ttl
def __get_session_credentials(self):
"""
Get session credentials
"""
session = Session(region_name=self.region_name, profile_name=self.profile_name)
# if sts_arn is given, get credential by assuming given role
if self.sts_arn:
sts_client = session.client(service_name="sts", region_name=self.region_name)
response = sts_client.assume_role(
RoleArn=self.sts_arn,
RoleSessionName=self.session_name,
DurationSeconds=self.session_ttl,
).get("Credentials")
credentials = {
"access_key": response.get("AccessKeyId"),
"secret_key": response.get("SecretAccessKey"),
"token": response.get("SessionToken"),
"expiry_time": response.get("Expiration").isoformat(),
}
else:
session_credentials = session.get_credentials().__dict__
credentials = {
"access_key": session_credentials.get("access_key"),
"secret_key": session_credentials.get("secret_key"),
"token": session_credentials.get("token"),
"expiry_time": datetime.fromtimestamp(time() + self.session_ttl).isoformat(),
}
return credentials
def refreshable_session(self) -> Session:
"""
Get refreshable boto3 session.
"""
# get refreshable credentials
refreshable_credentials = RefreshableCredentials.create_from_metadata(
metadata=self.__get_session_credentials(),
refresh_using=self.__get_session_credentials,
method="sts-assume-role",
)
# attach refreshable credentials current session
session = get_session()
session._credentials = refreshable_credentials
session.set_config_variable("region", self.region_name)
autorefresh_session = Session(botocore_session=session)
return autorefresh_session
According to the documentation, the client looks in several locations for credentials and there are other options that are also more programmatic-friendly that you might want to consider instead of the .aws/credentials file.
Quoting the docs:
The order in which Boto3 searches for credentials is:
Passing credentials as parameters in the boto.client() method
Passing credentials as parameters when creating a Session object
Environment variables
Shared credential file (~/.aws/credentials)
AWS config file (~/.aws/config)
Assume Role provider
In your case, since you are already catching the exception and renewing the credentials, I would simply pass the new ones to a new instance of the client like so:
client = boto3.client(
's3',
aws_access_key_id=NEW_ACCESS_KEY,
aws_secret_access_key=NEW_SECRET_KEY,
aws_session_token=NEW_SESSION_TOKEN
)
If instead you are using these same credentials elsewhere in the code to create other clients, I'd consider setting them as environment variables:
import os
os.environ['AWS_ACCESS_KEY_ID'] = NEW_ACCESS_KEY
os.environ['AWS_SECRET_ACCESS_KEY'] = NEW_SECRET_KEY
os.environ['AWS_SESSION_TOKEN'] = NEW_SESSION_TOKEN
Again, quoting the docs:
The session key for your AWS account [...] is only needed when you are using temporary credentials.
Here is my implementation which only generates new credentials if existing credentials expire using a singleton design pattern
import boto3
from datetime import datetime
from dateutil.tz import tzutc
import os
import binascii
class AssumeRoleProd:
__credentials = None
def __init__(self):
assert True==False
#staticmethod
def __setCredentials():
print("\n\n ======= GENERATING NEW SESSION TOKEN ======= \n\n")
# create an STS client object that represents a live connection to the
# STS service
sts_client = boto3.client('sts')
# Call the assume_role method of the STSConnection object and pass the role
# ARN and a role session name.
assumed_role_object = sts_client.assume_role(
RoleArn=your_role_here,
RoleSessionName=f"AssumeRoleSession{binascii.b2a_hex(os.urandom(15)).decode('UTF-8')}"
)
# From the response that contains the assumed role, get the temporary
# credentials that can be used to make subsequent API calls
AssumeRoleProd.__credentials = assumed_role_object['Credentials']
#staticmethod
def getTempCredentials():
credsExpired = False
# Return object for the first time
if AssumeRoleProd.__credentials is None:
AssumeRoleProd.__setCredentials()
credsExpired = True
# Generate if only 5 minutes are left for expiry. You may setup for entire 60 minutes by catching botocore ClientException
elif (AssumeRoleProd.__credentials['Expiration']-datetime.now(tzutc())).seconds//60<=5:
AssumeRoleProd.__setCredentials()
credsExpired = True
return AssumeRoleProd.__credentials
And then I am using singleton design pattern for client as well which would generate a new client only if new session is generated. You can add region as well if required.
class lambdaClient:
__prodClient = None
def __init__(self):
assert True==False
#staticmethod
def __initProdClient():
credsExpired, credentials = AssumeRoleProd.getTempCredentials()
if lambdaClient.__prodClient is None or credsExpired:
lambdaClient.__prodClient = boto3.client('lambda',
aws_access_key_id=credentials['AccessKeyId'],
aws_secret_access_key=credentials['SecretAccessKey'],
aws_session_token=credentials['SessionToken'])
return lambdaClient.__prodClient
#staticmethod
def getProdClient():
return lambdaClient.__initProdClient()

Connect to service bus using python SAS token

I need to connect to azure service bus using SAS token(generate and connect).
I don't see anything for the python implementation.
This link provides the implementation for Eventhubs -
https://learn.microsoft.com/en-us/rest/api/eventhub/generate-sas-token#python
Not sure where I can find the python implementation for servicebus.
I have found a way where you can do it for the ServiceBusService Class.
After running "pip install azure.servicebus", I imported it as:
from azure.servicebus.control_client import ServiceBusService
The ServiceBusService constructor takes an argument called "authentication", which isn't specified by default.
If you got into the ServiceBusService init file, you can see how authentication is handled in more detail.
if authentication:
self.authentication = authentication
else:
if not account_key:
account_key = os.environ.get(AZURE_SERVICEBUS_ACCESS_KEY)
if not issuer:
issuer = os.environ.get(AZURE_SERVICEBUS_ISSUER)
if shared_access_key_name and shared_access_key_value:
self.authentication = ServiceBusSASAuthentication(
shared_access_key_name,
shared_access_key_value)
elif account_key and issuer:
self.authentication = ServiceBusWrapTokenAuthentication(
account_key,
issuer)
If you don't pass a custom authentication object, it will then try to use the ServiceBusSASAuthentication class, which is the default if you populate the shared_access_key_name and shared_access_key_value.
So if you jump into the ServiceBusSASAuthentication class, you'll notice something useful.
class ServiceBusSASAuthentication:
def __init__(self, key_name, key_value):
self.key_name = key_name
self.key_value = key_value
self.account_key = None
self.issuer = None
def sign_request(self, request, httpclient):
request.headers.append(
('Authorization', self._get_authorization(request, httpclient)))
def _get_authorization(self, request, httpclient):
uri = httpclient.get_uri(request)
uri = url_quote(uri, '').lower()
expiry = str(self._get_expiry())
to_sign = uri + '\n' + expiry
signature = url_quote(_sign_string(self.key_value, to_sign, False), '')
auth_format = 'SharedAccessSignature sig={0}&se={1}&skn={2}&sr={3}' # <----awww, yeah
auth = auth_format.format(signature, expiry, self.key_name, uri)
return auth # <--after inserting values into string, the SAS Token is just returned.
def _get_expiry(self): # pylint: disable=no-self-use
'''Returns the UTC datetime, in seconds since Epoch, when this signed
request expires (5 minutes from now).'''
return int(round(time.time() + 300))
The sign_request function is the only function that will be directly referenced by the ServiceBusService class when it does authentication, but you'll notice that all its doing is adding an authentication header to a request that...IS IN THE FORMAT OF A SAS TOKEN.
So at this point I had all the information I needed to make my own authentication class. I made one that looked exactly like this.
class ServiceBusSASTokenAuthentication:
def __init__(self, sas_token):
self.sas_token = sas_token
# this method is the one used by ServiceBusService for authentication, need to leave signature as is
# even though we don't use httpClient like the original.
def sign_request(self, request, httpclient):
request.headers.append(
('Authorization', self._get_authorization())
)
def _get_authorization(self):
return self.sas_token
I probably could get rid of the _get_auth function all together, but I haven't polished everything up yet.
So now if you call this class like so in the ServiceBusService constructor with a valid SAS Token, it should work.
subscription_client = ServiceBusService(
authentication=ServiceBusSASTokenAuthentication(sas_token=sas_token),
service_namespace=service_namespace
)
Once you create the Service Bus using Azure Portal, ServiceBusService object enables you to work with queues.
Follow this document for more information on creating the queue, sending message to queue, receiving message from a queue using python to programmatically access the Service Bus.

Resources