DDD Aggregate with potentially large collection with important invariant [closed] - domain-driven-design

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 2 years ago.
Improve this question
I understand that Aggregates should be small and they should protect invariants.
I also know that keeping large collections in Aggregates impacts performance.
I have a usecase, that needs to protect its invariants, but also will lead to large collection.
Aggregate is Vendor, and it can have multiple active Promotion(s). Each Promotion has PromotionType, StartDate and EndDate. The invariants are:
at any point of time there can be max one promotion of each PromotionType
at any point of time there can be max 2 promotions
public Vendor : Aggregate {
public Guid Id;
public List<Promotion> Promotions;
// some other Vendor props here
public void AddPromotion(Promotion promo) {
// protect invariants (business rules) here:
// rule_1: if 2 promotions are already active during any time between promo.Start and promo.End then throw ex
// rule_2: if during any time between promo.Start and promo.End there is promo with same Type then throw ex
// if all is ok (invariants protected) then:
Promotions.Add(promo);
}
}
public Promotion : ValueObject {
public PromotionType Type; // enum CheapestItemForFree, FreeDelivery, Off10PercentOfTotalBill
public DateTime Start;
public DateTime End;
}
As we can see, Promotions collection will grow while new promotions are added during time, and old promotions will get expired.
solution 1)
One possibility is to make Promotion an aggregate on its own, containing VendorId, but in that case it would be difficult to protect mentioned invariants.
solution 2)
Another possibility is to have a maintenance job that will move expired (EndDate passed) to some history table, but it's smelly solution IMO.
solution 3)
Yet another possibility is to also make Promotion an aggregate on its own but protect the invariants in Domain Service, e.g.:
public class PromotionsDomainService {
public Promotion CreateNewVendorPromotion(Guid vendorId, DateTime start, DateTime end, PromotionType type) {
// protect invariants here:
// invariants broken -> throw ex
// invariants valid -> return new Promotion aggregate object
}
}
... but protecting it in PromotionsDomainService (and returning Aggregates) we risk race condition and inconsistency (unless we apply pessimistic lock).
What is recommended DDD approach in such case?

Your aggregate should contain only the data you need in order to fulfill its purpose. Reading the description of your problem, I don't see that Vendor needs the expired promotions for anything. Therefore you only need to keep the active promotions in the collection.
In your AddPromotion method, if there is an active promotion of that type, you will return an error. If there isn't any promotion of that type, you will add it and if there is an expired promotion of that type, you will replace it. Unless you have a huge number of promotion types (which doesn't seem to be the case), you will have a maximum of one promotion of each type. It seems that this will keep the collection to a very reasonable size. Let me know if this is not the case.
It is very possible that you need the expired promotions as historical data. But these should be on a read model designed for that purpose, not in the aggregate. For that, the aggregate could publish an event every type it accepts a new promotion and a listener would react to that event and insert a record in the historical promotions table.
Update:
After reading again the question, I realized that you don't even need to keep one promotion of each type. You will have a maximum of 2 promotions in the collection, so the size of the collection will be maximum 2, unless I'm misunderstanding it.

This is an interesting case since I have have always struggled with why an aggregate root would ever need an entity. I tend to favor value objects in aggregates that reference other aggregates by id but I think you may have an entity here.
A solution may be to only have the ability to register promotions within a Vendor, thereby enforcing the invariant. The VendorRepository would only load the active promotions and add them to the Vendor. In this way they can expire at any time but the repository would only load the relevant promotions.
For open-ended promotions (which you probably wouldn't necessarily have) you can even expire them outside of the Vendor and your invariants should still be satisfied.
Even if you go with a Promotion as a value object, which would work, you can still follow this approach.

Related

What rules to follow when designing aggragates in DDD?

I am re-designing my side-project to utilize DDD. I am doing this for learning purposes. It's an application for planning home budget and analysis of spendings. One of functionalities of the app is that user registers expenses and divides them into categories.
I have general question: how do you design aggregates? What steps to follow?
Below you'll find steps that I followed that lead me nowhere.
I did design-level event storming session for the project up to a step where I have identified invariants and now I am trying to name aggregates. Please consider following slice of event storming artifact as an example:
I identified relevant entities. Entities relevant to the example:
Expense
Expense category
Expense category group
I designed aggregate that fulfills all of the invariants:
I read this great article about designing aggregates. According to the article aggragates should follow the rules of:
Consistency of the lifecycle
Consistency of the problem domain
Consistency of the scenario frequency
As few elements as possible within the aggregation
In case of my aggregate I can see that:
Consistency of lifecycle rule is violated (because expense is still meaningful when you delete expense category)
Consistency of the scenarion frequency rule is violated (because expenses will created much more frequent than expense categories will be modified)
There's also to many elements in the aggregate. The expenses list will be growing.
I re-designed the aggregates so that the rules are satisfied. Here's what I've got.
I realized that now one of the invariants is not part of transactional consistency. Namely the invariant stating "Expense cannot be assigned to category withdrew from usage before the expense date". I know that it is possible to negotiate business rules and replace invariant with some sort of corrective policy but in this case I have no idea of what this policy can be (this is side-project, I am the stakeholder).
And now I am stuck. Please, help. What am I doing wrong?
So far my conclusion are that:
sometimes I can't have small and well-designed aggregates that satisfy all requirements on consistency
DDD style application will probably degenerate fast when developed by team with usual structure (more regular/junior developers than seniors/leaders).
developing DDD style adds huge overhead spent on analysis of which rules should be transactionally consistent, which eventually consistent, how changes to rules impact aggregate structure
Your conclusions are reasonable.
Regarding the invariant:
Expense cannot be assigned to category withdrew from usage before the
expense date
I presume you have a method on your Expense that accepts a Category Id and amount, so that this can be called to categorise your expense.
I'd pass in the Category entity itself and go for:
public class Category
{
DateTime? Withdrawn { get; set; }
public bool IsWithdrawn() => Withdrawn != null && Withdrawn < DateTime.Now;
}
public class Expense
{
public void Categorise(Category category, decimal amount)
{
if (category.IsWithdrawn())
{
throw new InvalidOperation("Cannot use category. It is withdrawn.");
}
// Complete the categorisation
}
}
Now, your application layer will retrieve the Category to be passed into the Expense method.
The Expense can then enforce its own invariant.
NOTE:
There is the corner case that a Category gets withdrawn by another process after your application layer has retrieved it but before your Expense is committed. As this end-to-end process would be very short, my guess is that this is unlikely to be a concern in your use case, but worth considering.
Approaches for ensuring that Category has not been 'withdrawn' before Expense is saved:
1 - Use a Domain Event
When the Expense is categorised add an appropriate domain event. The domain event handler can then perform a just-in-time check about the validity of the Category before the transaction is committed.
2 - Catch FK Exception
If 'withdrawn' means deleted from the database, then use the approach from above and when you try to save the Categorisation with an FK pointing to a now-deleted Category then you'll get an FK exception which you can catch and handle.
3 - Use Concurrency Token
If 'withdrawn' is just a flag that's put on the Category or Category is not referenced thru a database-enforced foreign key, then you could use a concurrency token. Various ways of implementing it, but using this approach will tell you if the state of the Category may have changed since you last retrieved it. If so, you can re-run the command. If that state change was the 'withdrawal' of the category, then second time around the approach above will enforce the invariant.

DDD Factory Responsibility

If have the following Code.
public class CountryFactory : IEntityFactory
{
private readonly IRepository<Country> countryRepository;
public CountryFactory(IRepository<Country> countryRepository)
{
this.countryRepository = countryRepository;
}
public Country CreateCountry(string name)
{
if (countryRepository.FindAll().Any(c => c.Name == name))
{
throw new ArgumentException("There is already a country with that name!");
}
return new Country(name);
}
}
From a DDD approach, is the the correct way to create a Country. Or is it better to have a CountryService which checks whether or not a country exists, then if it does not, just call the factory to return a new entity. This will then mean that the service will be responsible of persisting the Entity rather than the Factory.
I'm a bit confused as to where the responsibility should lay. Especially if more complex entities needs to be created which is not as simple as creating a country.
In DDD factories are used to encapsulate complex objects and aggregates creation. Usually, factories are not implemented as separate classes but rather static methods on the aggregate root class that returns the new aggregate.
Factory methods are better suited than constructors since you might need to have technical constructors for serialization purposes and var x = new Country(name) has very little meaning inside your Ubiquitous Language. What does it mean? Why do you need a name when you create a country? Do you really create countries, how often new countries appear, do you even need to model this process? All these questions arise if you start thinking about your model and ubiquitous language besides tactical pattern.
Factories must return valid objects (i.e. aggregates), checking all invariants inside it, but not outside. Factory might receive services and repositories as parameters but this is also not very common. Normally, you have an application service or command handler that does some validations and then creates a new aggregate using the factory method and adds it to the repository.
There is also a good answer by Lev Gorodinski here Factory Pattern where should this live in DDD?
Besides, implementation of Factories is extensively described in Chapter 11 of the Red Book.
Injecting a Repository into a Factory is OK, but it shouldn't be your first concern. The starting point should be : what kind of consistency does your business domain require ?
By checking Country name uniqueness in CountryFactory which is part of your Domain layer, you give yourself the impression that the countries will always be consistent. But the only aggregate is Country and since there is no AllCountries aggregate to act as a consistency boundary, respect of this invariant will not be guaranteed. Somebody could always sneak in a new Country that has exactly the same name as the one being added, just after you checked it. What you could do is wrap the CreateCountry operation into a transaction that would lock the entire set of Countries (and thus the entire table if you use an RDBMS) but this would hurt concurrency.
There are other options to consider.
Why not leverage a database unique constraint to enforce the Country name invariant ? As a complement, you could also have another checkpoint at the UI level to warn the user that the country name they typed in is already taken. This would necessitate another "query" service that just calls CountryRepository.GetByName() but where the returned Countries are not expected to be modified.
Soon you'll be realizing that there are really two kinds of models - ones that can give you some domain data at a given moment in time so that you can display it on a user interface, and ones that expose operations (AddCountry) and will guarantee that domain invariants always hold. This is a first step towards CQRS.
What is the frequency of Countries being added or modified ? If it is that high, do we really need a Country name to be unique at all times ? Wouldn't it solve a lot of problems if we loosened up the constraints and allowed a user to temporarily create a duplicate Country name ? A mechanism could detect the duplicates later on and take a compensating action, putting the newly added Country on hold and reaching out to the user to ask them to change the name. A.k.a eventual consistency instead of immediate consistency.
Does Country need to be an Aggregate ? What would be the cost if it was a Value Object and duplicated in each entity where it is used ?

DDD: Large Aggregate Root - Person

I am building a system to manage person information. I have an ever growing aggregate root called Person. It now has hundreds of related objects, name, addresses, skills, absences, etc. My concern is that the Person AR is both breaking SRP and will create performance problems as more and more things (esp collections) get added to it.
I cannot see how with DDD to break this down into smaller objects. Taking the example of Absences. The Person has a collection of absence records (startdate, enddate, reason). These are currently managed through the Person (BookAbsence, ChangeAbsence, CancelAbsence). When adding absences I need to validate against all other absences, so I need an object which has access to the other absences in order to do this validation.
Am I missing something here? Is there another AR I have not identified? In the past I would have done this via an "AbsenceManager" service, but would like to do it using DDD.
I am fairly new to DDD, so maybe I am missing something.
Many Thanks....
The Absence chould be modeled as an aggregate. An AbsenceFactory is reposible for validating against other Absence s when you want to add a new Absence.
Code example:
public class AbsenceFactory {
private AbsenceRepository absenceRepository;
public Absence newAbsenceOf(Person person) {
List<Absence> current =
absenceRepository.findAll(person.getIdentifier());
//validate and return
}
}
You can find this pattern in the blue book (section 6.2 Factory if I'm not mistaken)
In other "modify" cases, you could introduce a Specification
public class SomeAbsenceSpecification {
private AbsenceRepository absenceRepository;
public SomeAbsenceSpecification(AbsenceRepository absenceRepository) {
this.absenceRepository=absenceRepository;
}
public boolean isSatisfiedBy(Absence absence) {
List<Absence> current =
absenceRepository.findAll(absence.getPersonIdentifier());
//validate and return
}
}
You can find this pattern in the blue book(section 9.2.3 Specification)
This is indeed what makes aggregate design so tricky. Ownership does not necessarily mean aggregation. One needs to understand the domain to be able to give a proper answer so we'll go with the good ol' Order example. A Customer would not have a collection of Order objects. The simplest rule is to think about deleting an AR. Those objects that could make sense in the absence of the AR probably do not belong on the AR. A Customer may very well have a collection of ActiveOrder objects, though. Of course there would be an invariant stating that a customer cannot be deleted if it has active orders.
Another thing to look out for is a bloated bounded context. It is conceivable that you could have one or more bounded contexts that have not been identified leading to a situation where you have an AR doing too much.
So in your case you may very well still be interested in the Absence should the Customer be deleted. In the case of an OrderLine it has no meaning without its Order. So no lifecycle of its own.
Hope that helps ever so slightly.
I am building a system to manage person information.
Are you sure that a simple CRUD application that edit/query RDBMS's tables via SQL, wouldn't be a cheaper approach?
If you can express the most of the business rules in term of data relations and table operations, you shouln't use DDD at all.
I have an ever growing aggregate root called Person.
If you actually have complex business rules, an ever growing aggregate is often a syntom of undefined (or wrongly defined) context boundaries.

Please clarify how create/update happens against child entities of an aggregate root

After much reading and thinking as I begin to get my head wrapped around DDD, I am a bit confused about the best practices for dealing with complex hierarchies under an aggregate root. I think this is a FAQ but after reading countless examples and discussions, no one is quite talking about the issue I'm seeing.
If I am aligned with the DDD thinking, entities below the aggregate root should be immutable. This is the crux of my trouble, so if that isn't correct, that is why I'm lost.
Here is a fabricated example...hope it holds enough water to discuss.
Consider an automobile insurance policy (I'm not in insurance, but this matches the language I hear when on the phone w/ my insurance company).
Policy is clearly an entity. Within the policy, let's say we have Auto. Auto, for the sake of this example, only exists within a policy (maybe you could transfer an Auto to another policy, so this is potential for an aggregate as well, which changes Policy...but assume it simpler than that for now). Since an Auto cannot exist without a Policy, I think it should be an Entity but not a root. So Policy in this case is an aggregate root.
Now, to create a Policy, let's assume it has to have at least one auto. This is where I get frustrated. Assume Auto is fairly complex, including many fields and maybe a child for where it is garaged (a Location). If I understand correctly, a "create Policy" constructor/factory would have to take as input an Auto or be restricted via a builder to not be created without this Auto. And the Auto's creation, since it is an entity, can't be done beforehand (because it is immutable? maybe this is just an incorrect interpretation). So you don't get to say new Auto and then setX, setY, add(Z).
If Auto is more than somewhat trivial, you end up having to build a huge hierarchy of builders and such to try to manage creating an Auto within the context of the Policy.
One more twist to this is later, after the Policy is created and one wishes to add another Auto...or update an existing Auto. Clearly, the Policy controls this...fine...but Policy.addAuto() won't quite fly because one can't just pass in a new Auto (right!?). Examples say things like Policy.addAuto(VIN, make, model, etc.) but are all so simple that that looks reasonable. But if this factory method approach falls apart with too many parameters (the entire Auto interface, conceivably) I need a solution.
From that point in my thinking, I'm realizing that having a transient reference to an entity is OK. So, maybe it is fine to have a entity created outside of its parent within the aggregate in a transient environment, so maybe it is OK to say something like:
auto = AutoFactory.createAuto();
auto.setX
auto.setY
or if sticking to immutability, AutoBuilder.new().setX().setY().build()
and then have it get sorted out when you say Policy.addAuto(auto)
This insurance example gets more interesting if you add Events, such as an Accident with its PolicyReports or RepairEstimates...some value objects but most entities that are all really meaningless outside the policy...at least for my simple example.
The lifecycle of Policy with its growing hierarchy over time seems the fundamental picture I must draw before really starting to dig in...and it is more the factory concept or how the child entities get built/attached to an aggregate root that I haven't seen a solid example of.
I think I'm close. Hope this is clear and not just a repeat FAQ that has answers all over the place.
Aggregate Roots exist for the purpose of transactional consistency.
Technically, all you have are Value Objects and Entities.
The difference between the two is immutability and identity.
A Value Object should be immutable and it's identity is the sum of it's data.
Money // A value object
{
string Currency;
long Value;
}
Two Money objects are equal if they have equal Currency and equal Value. Therefore, you could swap one for the other and conceptually, it would be as if you had the same Money.
An Entity is an object with mutability over time, but whose identity is immutable throughout it's lifetime.
Person // An entity
{
PersonId Id; // An immutable Value Object storing the Person's unique identity
string Name;
string Email;
int Age;
}
So when and why do you have Aggregate Roots?
Aggregate Roots are specialized Entities whose job is to group a set of domain concepts under one transactional scope for purpose of data change only. That is, say a Person has Legs. You would need to ask yourself, should changes on Legs and changes on Person be grouped together under a single transaction? Or can I change one separately from the other?
Person // An entity
{
PersonId Id;
string Name;
string Ethnicity;
int Age;
Pair<Leg> Legs;
}
Leg // An entity
{
LegId Id;
string Color;
HairAmount HairAmount; // none, low, medium, high, chewbacca
int Length;
int Strength;
}
If Leg can be changed by itself, and Person can be changed by itself, then they both are Aggregate Roots. If Leg can not be changed alone, and Person must always be involved in the transaction, than Leg should be composed inside the Person entity. At which point, you would have to go through Person to change Leg.
This decision will depend on the domain you are modeling:
Maybe the Person is the sole authority on his legs, they grow longer and stronger based on his age, the color changes according to his ethnicity, etc. These are invariants, and Person will be responsible for making sure they are maintained. If someone else wants to change this Person's legs, say you want to shave his legs, you'd have to ask him to either shaves them himself, or hand them to you temporarily for you to shave.
Or you might be in the domain of archeology. Here you find Legs, and you can manipulate the Legs independently. At some point, you might find a complete body and guess who this person was historically, now you have a Person, but the Person has no say in what you'll do with the Legs you found, even if it was shown to be his Legs. The color of the Leg changes based on how much restoration you've applied to it, or other things. These invariants would be maintained by another Entity, this time it won't be Person, but maybe Archaeologist instead.
TO ANSWER YOUR QUESTION:
I keep hearing you talk about Auto, so that's obviously an important concept of your domain. Is it an entity or a value object? Does it matter if the Auto is the one with serial #XYZ, or are you only interested in brand, colour, year, model, make, etc.? Say you care about the exact identity of the Auto and not just it's features, than it would need to be an Entity of your domain. Now, you talk about Policy, a policy dictates what is covered and not covered on an Auto, this depends on the Auto itself, and probably the Customer too, since based on his driving history, the type and year and what not of Auto he has, his Policy might be different.
So I can already conceive having:
Auto : Entity, IAggregateRoot
{
AutoId Id;
string Serial;
int Year
colour Colour;
string Model
bool IsAtGarage
Garage Garage;
}
Customer : Entity, IAggregateRoot
{
CustomerId Id;
string Name;
DateTime DateOfBirth;
}
Policy : Entity, IAggregateRoot
{
string Id;
CustomerId customer;
AutoId[] autos;
}
Garage : IValueObject
{
string Name;
string Address;
string PhoneNumber;
}
Now the way you make it sound, you can change a Policy without having to change an Auto and a Customer together. You say things like, what if the Auto is at the garage, or we transfer an Auto from one Policy to another. This makes me feel like Auto is it's own Aggregate Root, and so is Policy and so is Customer. Why is that? Because it sounds like it is the usage of your domain that you would change an Auto's garage without caring that the Policy be changed with it. That is, if someone changes an Auto's Garage and IsAtGarage state, you don't care not to change the Policy. I'm not sure if I'm being clear, you wouldn't want to change the Customer's Name and DateOfBirth in a non transactional way, because maybe you change his name, but it fails to change the Date and now you have a corrupt customer whose Date of Birth doesn't match his name. On the other hand, it's fine to change the Auto without changing the Policy. Because of this, Auto should not be in the aggregate of Policy. Effectively, Auto is not a part of Policy, but only something that the Policy keeps track of and might use.
Now we see that it then totally make sense that you are able to create an Auto on it's own, as it is an Aggregate Root. Similarly, you can create Customers by themselves. And when you create a Policy, you simply must link it to a corresponding Customer and his Autos.
aCustomer = Customer.Make(...);
anAuto = Auto.Make(...);
anotherAuto = Auto.Make(...);
aPolicy = Policy.Make(aCustomer, { anAuto, anotherAuto }, ...);
Now, in my example, Garage isn't an Aggregate Root. This is because, it doesn't seem to be something that the domain directly works with. It is always used through an Auto. This makes sense, Insurance companies don't own garages, they don't work in the business of garages. You wouldn't ever need to create a Garage that existed on it's own. It's easy then to have an anAuto.SentToGarage(name, address, phoneNumber) method on Auto which creates a Garage and assign it to the Auto. You wouldn't delete a Garage on it's own. You would do anAuto.LeftGarage() instead.
entities below the aggregate root should be immutable.
No. Value objects are supposed to be immutable. Entities can change their state.
Just need to make sure You do proper encapsulation:
entities modifies themselves
entities are modified through aggregate root only
but Policy.addAuto() won't quite fly because one can't just pass in a new Auto (right!?)
Usually it's supposed to be so. Problem is that auto creation task might become way too large. If You are lucky and, knowing that entities can be modified, are able to divide smoothly it into smaller tasks like SpecifyEngine, problem is resolved.
However, "real world" does not work that way and I feel Your pain.
I got case when user uploads 18 excel sheets long crap load of data (with additional fancy rule - it should be "imported" whatever how invalid data are (as I say - that's like saying true==false)). This upload process is considered as one atomic operation.
What I do in this case...
First of all - I have excel document object model, mappings (e.g. Customer.Name==1st sheet, "C24") and readers that fill DOM. Those things live in infrastructure far far away.
Next thing - entity and value objects in my domain that looks similar to DOM dto`s, but only projection that I'm interested in, with proper data types and according validation. + I Have 1:1 association in my domain model that isolates dirty mess out (luckily enough, it kind a fits with ubiquitous language).
Armed with that - there's still one tricky part left - mapping between excel DOM dtos to domain objects. This is where I sacrifice encapsulation - I construct entity with its value objects from outside. My thought process is kind a simple - this overexposed entity can't be persisted anyway and validness still can be forced (through constructors). It lives underneath aggregate root.
Basically - this is the part where You can't runaway from CRUDyness.
Sometimes application is just editing bunch of data.
P.s. I'm not sure that I'm doing right thing. It's likely I've missed something important on this issue. Hopefully there will be some insight from other answerers.
Part of my answer seems to be captured in these posts:
Domain Driven Design - Parent child relation pattern - Specification pattern
Best practice for Handling NHibernate parent-child collections
how should i add an object into a collection maintained by aggregate root
To summarize:
It is OK to create an entity outside its aggregate if it can manage its own consistency (you may still use a factory for it). So having a transient reference to Auto is OK and then a new Policy(Auto) is how to get it into the aggregate. This would mean building up "temporary" graphs to get the details spread out a bit (not all piled into one factory method or constructor).
I'm seeing my alternatives as either:
(a) Build a DTO or other anemic graph first and then pass it to a factory to get the aggregate built.
Something like:
autoDto = new AutoDto();
autoDto.setVin(..);
autoDto.setEtc...
autoDto.setGaragedLocation(new Location(..));
autoDto.addDriver(...);
Policy policy = PolicyFactory.getInstance().createPolicy(x, y, autoDto);
auto1Dto...
policy.addAuto(auto1Dto);
(b) Use builders (potentially compound):
builder = PolicyBuilder.newInstance();
builder = builder.setX(..).setY(..);
builder = builder.addAuto(vin, new Driver()).setGaragedLocation(new Location());
Policy = builder.build();
// and how would update work if have to protect the creation of Auto instances?
auto1 = AutoBuilder.newInstance(policy, vin, new Driver()).build();
policy.addAuto(auto1);
As this thing twists around and around a couple things seem clear.
In the spirit of ubiquitous language, it makes sense to be able to say:
policy.addAuto
and
policy.updateAuto
The arguments to these and how the aggregate and the entity creation semantics are managed is not quite clear, but having to look at a factory to understand the domain seems a bit forced.
Even if Policy is an aggregate and manages how things are put together beneath it, the rules about how an Auto looks seem to belong to Auto or its factory (with some exceptions for where Policy is involved).
Since Policy is invalid without a minimally constructed set of children, those children need to be created prior or within its creation.
And that last statement is the crux. It looks like for the most part these posts handle the creation of children as separate affairs and then glue them. The pure DDD approach would seem to argue that Policy has to create Autos but the details of that spin wildly out of control in non-trivial cases.

What Belongs to the Aggregate Root

This is a practical Domain Driven Design question:
Conceptually, I think I get Aggregate roots until I go to define one.
I have an Employee entity, which has surfaced as an Aggregate root. In the Business, some employees can have work-related Violations logged against them:
Employee-----*Violations
Since not all Employees are subject to this, I would think that Violations would not be a part of the Employee Aggregate, correct?
So when I want to work with Employees and their related violations, is this two separate Repository interactions by some Service?
Lastly, when I add a Violation, is that method on the Employee Entity?
Thanks for the help!
After doing even MORE research, I think I have the answer to my question.
Paul Stovell had this slightly edited response to a similar question on the DDD messageboard. Substitute "Customer" for "Employee", and "Order" for "Violation" and you get the idea.
Just because Customer references Order
doesn't necessarily mean Order falls
within the Customer aggregate root.
The customer's addresses might, but
the orders can be independent (for
example, you might have a service that
processes all new orders no matter who
the customer is. Having to go
Customer->Orders makes no sense in
this scenario).
From a domain point of view, you can
even question the validity of those
references (Customer has reference to
a list of Orders). How often will you
actually need all orders for a
customer? In some systems it makes
sense, but in others, one customer
might make many orders. Chances are
you want orders for a customer between
a date range, or orders for a customer
that aren't processed yet, or orders
which have not been paid, and so on.
The scenario in which you'll need all
of them might be relatively uncommon.
However, it's much more likely that
when dealing with an Order, you will
want the customer information. So in
code, Order.Customer.Name is useful,
but Customer.Orders[0].LineItem.SKU -
probably not so useful. Of course,
that totally depends on your business
domain.
In other words, Updating Customer has nothing to do with updating Orders. And orders, or violations in my case, could conceivable be dealt with independently of Customers/Employees.
If Violations had detail lines, then Violation and Violation line would then be a part of the same aggregate because changing a violation line would likely affect a Violation.
EDIT**
The wrinkle here in my Domain is that Violations have no behavior. They are basically records of an event that happened. Not sure yet about the implications that has.
Eric Evan states in his book, Domain-Driven Design: Tackling the Complexity in the Heart of Software,
An AGGREGATE is a cluster of associated objects that we treat as a unit for the purpose of data changes.
There are 2 important points here:
These objects should be treated as a "unit".
For the purpose of "data change".
I believe in your scenario, Employee and Violation are not necessarily a unit together, whereas in the example of Order and OrderItem, they are part of a single unit.
Another thing that is important when modeling the agggregate boundaries is whether you have any invariants in your aggregate. Invariants are business rules that should be valid within the "whole" aggregate. For example, as for the Order and OrderItem example, you might have an invariant that states the total cost of the order should be less than a predefined amount. In this case, anytime you want to add an OrderItem to the Order, this invariant should be enforced to make sure that your Order is valid. However, in your problem, I don't see any invariants between your entities: Employee and Violation.
So short answer:
I believe Employee and Violation each belong to 2 separate aggregates. Each of these entities are also their own aggregate roots. So you need 2 repositories: EmployeeRepository and ViolationRepository.
I also believe you should have an unidirectional association from Violation to Employee. This way, each Violation object knows who it belongs to. But if you want to get the list of all Violations for a particular Employee, then you can ask the ViolationRepository:
var list = repository.FindAllViolationsByEmployee(someEmployee);
You say that you have employee entity and violations and each violation does not have any behavior itself. From what I can read above, it seems to me that you may have two aggregate roots:
Employee
EmployeeViolations (call it EmployeeViolationCard or EmployeeViolationRecords)
EmployeeViolations is identified by the same employee ID and it holds a collection of violation objects. You get behavior for employee and violations separated this way and you don't get Violation entity without behavior.
Whether violation is entity or value object you should decide based on its properties.
I generally agree with Mosh on this one. However, keep in mind the notion of transactions in the business point of view. So I actually take "for the purpose of data changes" to mean "for the purpose of transaction(s)".
Repositories are views of the domain model. In a domain environment, these "views" really support or represent a business function or capability - a transaction. Case in point, the Employee may have one or more violations, and if so, are aspects of a transaction(s) in a point in time. Consider your use cases.
Scenario: "An employee commits an act that is a violation of the workplace." This is a type of business event (i.e. transaction, or part of a larger, perhaps distributed transaction) that occurred. The root affected domain object actually can be seen from more than one perspective, which is why it is confusing. But the thing to remember is behavior as it pertains to a business transaction, since you want your business processes to model the real-world as accurate as possible. In terms of relationships, just like in a relational database, your conceptual domain model should actually indicate this already (i.e. the associativity), which often can be read in either direction:
Employee <----commits a -------committed by ----> Violation
So for this use case, it would be fair that to say that it is a transaction dealing with violations, and that the root - or "primary" entity - is a Violation. That, then would be your aggregate root you would reference for that particular business activity or business process. But that is not to say that, for a different activity or process, that you cannot have an Employee aggregate root, such as the "new employee process". If you take care, there should be no negative impact of cyclic references, or being able to traverse your domain model multiple ways. I will warn, however, that governing of this should be thought about and handled by your controller piece of your business domain, or whatever equivalent you have.
Aside: Thinking in terms of patterns (i.e. MVC), the repository is a view, the domain objects are the model, and thus one should also employ some form of controller pattern. Typically, the controller declares the concrete implementation of and access to the repositories (collections of aggregate roots).
In the data access world...
Using LINQ-To-SQL as an example, the DataContext would be the controller exposing a view of Customer and Order entities. The view is a non-declarative, framework-oriented Table type (rough equivalent to Repository). Note that the view keeps a reference to its parent controller, and often goes through the controller to control how/when the view gets materialized. Thus, the controller is your provider, taking care of mapping, translation, object hydration, etc. The model is then your data POCOs. Pretty much a typical MVC pattern.
Using N/Hibernate as an example, the ISession would be the controller exposing a view of Customer and Order entities by way of the session.Enumerable(string query) or session.Get(object id) or session.CreateCriteria(typeof(Customer)).List()
In the business logic world...
Customer { /*...*/ }
Employee { /*...*/ }
Repository<T> : IRepository<T>
, IEnumerable<T>
//, IQueryable<T>, IQueryProvider //optional
{ /**/ }
BusinessController {
Repository<Customer> Customers { get{ /*...*/ }} //aggregate root
Repository<Order> Orders { get{ /*...*/ }} // aggregate root
}
In a nutshell, let your business processes and transactions be the guide, and let your business infrastructure naturally evolve as processes/activities are implemented or refactored. Moreover, prefer composability over traditional black box design. When you get to service-oriented or cloud computing, you will be glad you did. :)
I was wondering what the conclusion would be?
'Violations' become a root entity. And 'violations' would be referenced by 'employee' root entity. ie violations repository <-> employee repository
But you are consfused about making violations a root entity becuase it has no behavior.
But is 'behaviour' a criteria to qualify as a root entity? I dont think so.
a slightly orthogonal question to test understanding here, going back to Order...OrderItem example, there might be an analytics module in the system that wants to look into OrderItems directly i.e get all orderItems for a particular product, or all order items greater than some given value etc, does having a lot of usecases like that and driving "aggregate root" to extreme could we argue that OrderItem is a different aggregate root in itself ??
It depends. Does any change/add/delete of a vioation change any part of employee - e.g. are you storing violation count, or violation count within past 3 years against employee?

Resources