Split up time series per year for plotting - python-3.x

I would like to plot a time series, start Oct-2015 and end Feb-2018, in one graph, each year is a single line. The time series is int64 value and is in a Pandas DataFrame. The date is in datetime64[ns] as one of the columns in the DataFrame.
How would I create a graph from Jan-Dez with 4 lines for each year.
graph['share_price'] and graph['date'] are used. I have tried Grouper, but that somehow takes Oct-2015 values and mixes it with the January values from all other years.
This groupby is close to what I want, but I loose the information which year the index of the list belongs to.
graph.groupby('date').agg({'share_price':lambda x: list(x)})
Then I have created a DataFrame with 4 columns, 1 for each year but still, I don't know how to go ahead and group these 4 columns in a way, that I will be able to plot a graph in a way I want.

You can achieve this by:
extracting the year from the date
replacing the dates by the equivalent without the year
setting both the year and the date as index
unstacking the values by year
At this point, each year will be a column, and each date within the year a row, so you can just plot normally.
Here's an example.
Assuming that your DataFrame looks something like this:
>>> import pandas as pd
>>> import numpy as np
>>> index = pd.date_range('2015-10-01', '2018-02-28')
>>> values = np.random.randint(-3, 4, len(index)).cumsum()
>>> df = pd.DataFrame({
... 'date': index,
... 'share_price': values
>>> })
>>> df.head()
date share_price
0 2015-10-01 0
1 2015-10-02 3
2 2015-10-03 2
3 2015-10-04 5
4 2015-10-05 4
>>> df.set_index('date').plot()
You would transform the DataFrame as follows:
>>> df['year'] = df.date.dt.year
>>> df['date'] = df.date.dt.strftime('%m-%d')
>>> unstacked = df.set_index(['year', 'date']).share_price.unstack(-2)
>>> unstacked.head()
year 2015 2016 2017 2018
date
01-01 NaN 28.0 -16.0 21.0
01-02 NaN 29.0 -14.0 22.0
01-03 NaN 29.0 -16.0 22.0
01-04 NaN 26.0 -15.0 23.0
01-05 NaN 25.0 -16.0 21.0
And just plot normally:
unstacked.plot()

Related

How to reformat time series to fill in missing entries with NaNs?

I have a problem that involves converting time series from one
representation to another. Each item in the time series has
attributes "time", "id", and "value" (think of it as a measurement
at "time" for sensor "id"). I'm storing all the items in a
Pandas dataframe with columns named by the attributes.
The set of "time"s is a small set of integers (say, 32),
but some of the "id"s are missing "time"s/"value"s. What I want to
construct is an output dataframe with the form:
id time0 time1 ... timeN
val0 val1 ... valN
where the missing "value"s are represented by NaNs.
For example, suppose the input looks like the following:
time id value
0 0 13
2 0 15
3 0 20
2 1 10
3 1 12
Then, assuming the set of possible times is 0, 2, and 3, the
desired output is:
id time0 time1 time2 time3
0 13 NaN 15 20
1 NaN NaN 10 12
I'm looking for a Pythonic way to do this since there are several
million rows in the input and around 1/4 million groups.
You can transform your table with a pivot. If you need to handle duplicate values for index/column pairs, you can use the more general pivot_table.
For your example, the simple pivot is sufficient:
>>> df = df.pivot(index="id", columns="time", values="value")
time 0 2 3
id
0 13.0 15.0 20.0
1 NaN 10.0 12.0
To get the exact result from your question, you could reindex the columns to fill in the empty values, and rename the column index like this:
# add missing time columns, fill with NaNs
df = df.reindex(range(df.columns.max() + 1), axis=1)
# name them "time#"
df.columns = "time" + df.columns.astype(str)
# remove the column index name "time"
df = df.rename_axis(None, axis=1)
Final df:
time0 time1 time2 time3
id
0 13.0 NaN 15.0 20.0
1 NaN NaN 10.0 12.0

Create a pandas column based on a lookup value from another dataframe

I have a pandas dataframe that has some data values by hour (which is also the index of this lookup dataframe). The dataframe looks like this:
In [1] print (df_lookup)
Out[1] 0 1.109248
1 1.102435
2 1.085014
3 1.073487
4 1.079385
5 1.088759
6 1.044708
7 0.902482
8 0.852348
9 0.995912
10 1.031643
11 1.023458
12 1.006961
...
23 0.889541
I want to multiply the values from this lookup dataframe to create a column of another dataframe, which has datetime as index.
The dataframe looks like this:
In [2] print (df)
Out[2]
Date_Label ID data-1 data-2 data-3
2015-08-09 00:00:00 1 2513.0 2502 NaN
2015-08-09 00:00:00 1 2113.0 2102 NaN
2015-08-09 01:00:00 2 2006.0 1988 NaN
2015-08-09 02:00:00 3 2016.0 2003 NaN
...
2018-07-19 23:00:00 33 3216.0 333 NaN
I want to calculate the data-3 column from data-2 column, where the weight given to 'data-2' column depends on corresponding value in df_lookup. I get the desired values by looping over the index as follows, but that is too slow:
for idx in df.index:
df.loc[idx,'data-3'] = df.loc[idx, 'data-2']*df_lookup.at[idx.hour]
Is there a faster way someone could suggest?
Using .loc
df['data-2']*df_lookup.loc[df.index.hour].values
Out[275]:
Date_Label
2015-08-09 00:00:00 2775.338496
2015-08-09 00:00:00 2331.639296
2015-08-09 01:00:00 2191.640780
2015-08-09 02:00:00 2173.283042
Name: data-2, dtype: float64
#df['data-3']=df['data-2']*df_lookup.loc[df.index.hour].values
I'd probably try doing a join.
# Fix column name
df_lookup.columns = ['multiplier']
# Get hour index
df['hour'] = df.index.hour
# Join
df = df.join(df_lookup, how='left', on=['hour'])
df['data-3'] = df['data-2'] * df['multiplier']
df = df.drop(['multiplier', 'hour'], axis=1)

Convert a numerical relative index (=months) to datetime

Given is a Pandas DataFrame with a numerical index representing the relative number of months:
df = pd.DataFrame(columns=['A', 'B'], index=np.arange(1,100))
df
A B
1 NaN NaN
2 NaN NaN
3 NaN NaN
...
How can the index be converted to a DateTimeIndex by specifying a start date (e.g., 2018-11-01)?
magic_function(df, start='2018-11-01', delta='month')
A B
2018-11-01 NaN NaN
2018-12-01 NaN NaN
2019-01-01 NaN NaN
...
I would favor a general solution that also works with arbitrary deltas, e.g. daily or yearly series.
Using date_range
idx=pd.date_range(start='2018-11-01',periods =len(df),freq='MS')
df.index=idx
I'm not sure with Pandas, but with plain datetime can't you just do this?
import datetime
start=datetime.date(2018,1,1)
months = 15
adjusted = start.replace(year=start.year + int(months/12), month=months%12)

Resampling with a Multiindex and several columns

I have a pandas dataframe with the following structure:
ID date m_1 m_2
1 2016-01-03 10 3.4
2016-02-07 11 3.3
2016-02-07 10.4 2.8
2 2016-01-01 10.9 2.5
2016-02-04 12 2.3
2016-02-04 11 2.7
2016-02-04 12.1 2.1
Both ID and date are a MultiIndex. The data represent some measurements made by some sensors (in the example two sensors). Those sensors sometimes create several measurements per day (as shown in the example).
My questions are:
How can I resample this so I have one row per day per sensor, but one column with the mean, another with the max another with min, etc?
How can I "align" (maybe this is no the correct word) the two time series, so both begin and end at the same time (from 2016-01-01 to 2016-02-07) adding the missing days with NAs?
You can use groupby with DataFrameGroupBy.resample and aggregate by functions in dict first and then reindex by MultiIndex.from_product:
df = df.reset_index(level=0).groupby('ID').resample('D').agg({'m_1':'mean', 'm_2':'max'})
df = df.reindex(pd.MultiIndex.from_product(df.index.levels, names = df.index.names))
#alternative for adding missing start and end datetimes
#df = df.unstack().stack(dropna=False)
print (df.head())
m_2 m_1
ID date
1 2016-01-01 NaN NaN
2016-01-02 NaN NaN
2016-01-03 3.4 10.0
2016-01-04 NaN NaN
2016-01-05 NaN NaN
For PeriodIndex in second level use set_levels with to_period:
df.index = df.index.set_levels(df.index.get_level_values('date').to_period('d'), level=1)
print (df.index.get_level_values('date'))
PeriodIndex(['2016-01-01', '2016-01-02', '2016-01-03', '2016-01-04',
'2016-01-05', '2016-01-06', '2016-01-07', '2016-01-08',
'2016-01-09', '2016-01-10', '2016-01-11', '2016-01-12',
'2016-01-13', '2016-01-14', '2016-01-15', '2016-01-16',
'2016-01-17', '2016-01-18', '2016-01-19', '2016-01-20',
'2016-01-21', '2016-01-22', '2016-01-23', '2016-01-24',
'2016-01-25', '2016-01-26', '2016-01-27', '2016-01-28',
'2016-01-29', '2016-01-30', '2016-01-31', '2016-02-01',
'2016-02-02', '2016-02-03', '2016-02-04', '2016-02-05',
'2016-02-06', '2016-02-07', '2016-01-01', '2016-01-02',
'2016-01-03', '2016-01-04', '2016-01-05', '2016-01-06',
'2016-01-07', '2016-01-08', '2016-01-09', '2016-01-10',
'2016-01-11', '2016-01-12', '2016-01-13', '2016-01-14',
'2016-01-15', '2016-01-16', '2016-01-17', '2016-01-18',
'2016-01-19', '2016-01-20', '2016-01-21', '2016-01-22',
'2016-01-23', '2016-01-24', '2016-01-25', '2016-01-26',
'2016-01-27', '2016-01-28', '2016-01-29', '2016-01-30',
'2016-01-31', '2016-02-01', '2016-02-02', '2016-02-03',
'2016-02-04', '2016-02-05', '2016-02-06', '2016-02-07'],
dtype='period[D]', name='date', freq='D')

Parse dates and create time series from .csv

I am using a simple csv file which contains data on calory intake. It has 4 columns: cal, day, month, year. It looks like this:
cal month year day
3668.4333 1 2002 10
3652.2498 1 2002 11
3647.8662 1 2002 12
3646.6843 1 2002 13
...
3661.9414 2 2003 14
# data types
cal float64
month int64
year int64
day int64
I am trying to do some simple time series analysis. I hence would like to parse month, year, and day to a single column. I tried the following using pandas:
import pandas as pd
from pandas import Series, DataFrame, Panel
data = pd.read_csv('time_series_calories.csv', header=0, pars_dates=['day', 'month', 'year']], date_parser=True, infer_datetime_format=True)
My questions are: (1) How do I parse the data and (2) define the data type of the new column? I know there are quite a few other similar questions and answers (see e.g. here, here and here) - but I can't make it work so far.
You can use parameter parse_dates where define column names in list in read_csv:
import pandas as pd
import numpy as np
import io
temp=u"""cal,month,year,day
3668.4333,1,2002,10
3652.2498,1,2002,11
3647.8662,1,2002,12
3646.6843,1,2002,13
3661.9414,2,2003,14"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), parse_dates=[['year','month','day']])
print (df)
year_month_day cal
0 2002-01-10 3668.4333
1 2002-01-11 3652.2498
2 2002-01-12 3647.8662
3 2002-01-13 3646.6843
4 2003-02-14 3661.9414
print (df.dtypes)
year_month_day datetime64[ns]
cal float64
dtype: object
Then you can rename column:
df.rename(columns={'year_month_day':'date'}, inplace=True)
print (df)
date cal
0 2002-01-10 3668.4333
1 2002-01-11 3652.2498
2 2002-01-12 3647.8662
3 2002-01-13 3646.6843
4 2003-02-14 3661.9414
Or better is pass dictionary with new column name to parse_dates:
df = pd.read_csv(io.StringIO(temp), parse_dates={'dates': ['year','month','day']})
print (df)
dates cal
0 2002-01-10 3668.4333
1 2002-01-11 3652.2498
2 2002-01-12 3647.8662
3 2002-01-13 3646.6843
4 2003-02-14 3661.9414

Resources