I'm using aiohttp with asyncio to make a batch of requests. My first approach was to create a session inside the fetch() function (which starts an asyncio.gather job), and then passing the session object around to the functions that perform the post requests (get_info)
def batch_starter(item_list)
return_value = loop.run_until_complete(fetch(item_list))
return return_value
async def fetch(item_list):
async with aiohttp.ClientSession() as session: # <- session started here
results = await asyncio.gather(*[asyncio.ensure_future(get_info(session, item)) for item in item_list])
async def get_info(session, item): # <- session passed to the function
async with session.post("some_url", data={"id": item}) as resp:
html = await resp.json()
some_info = html.get('info')
return some_info
but thanks to my confusion, I am now leaning towards instantiating the session right away once the script is imported, like below, at the top of the file:
import asyncio
import aiohttp
import json
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
session = aiohttp.ClientSession() # <- session started at top of file
def batch_starter(item_list)
return_value = loop.run_until_complete(fetch(item_list))
return return_value
async def fetch(item_list):
results = await asyncio.gather(*[asyncio.ensure_future(get_info(item)) for item in item_list])
async def get_info(item):
async with session.post("some_url", data={"id": item}) as resp: # <- session from outer scope is used
html = await resp.json()
some_info = html.get('info')
return some_info
the docs explain that opening a session with every request is a "very bad" idea (obviously). But this is stated right after the example which does apparently exactly that (first approach)? Which one of this is correct, and how is the session going to behave when it is used like in the second approach, at the top of the file? wouldn't the session just stay open forever if I'm using the second approach?
The batch_starter() function is not going to be called a lot, but with 9000+ items in the item_list. I assumed this was already reducing the amount of sessions to 1 (per gather job), but apparently this is the "bad idea" example, and needs to be corrected? the docs are a bit unclear about this...
Related
Let's say there's some API that's running in production already and you created another API which you kinda want to A/B test using the incoming requests that's hitting the production-api. Now I was wondering, is it possible to do something like this, (I am aware of people doing traffic splits by keeping two different API versions for A/B testing etc)
As soon as you get the incoming request for your production-api, you make an async request to your new API and then carry on with the rest of the code for the production-api and then, just before returning the final response to the caller back, you check whether you have the results computed for that async task that you had created before. If it's available, then you return that instead of the current API.
I am wondering, what's the best way to do something like this? Do we try to write a decorator for this or something else? i am a bit worried about lot of edge cases that can happen if we use async here. Anyone has any pointers on making the code or the whole approach better?
Thanks for your time!
Some pseudo-code for the approach above,
import asyncio
def call_old_api():
pass
async def call_new_api():
pass
async def main():
task = asyncio.Task(call_new_api())
oldResp = call_old_api()
resp = await task
if task.done():
return resp
else:
task.cancel() # maybe
return oldResp
asyncio.run(main())
You can't just execute call_old_api() inside asyncio's coroutine. There's detailed explanation why here. Please, ensure you understand it, because depending on how your server works you may not be able to do what you want (to run async API on a sync server preserving the point of writing an async code, for example).
In case you understand what you're doing, and you have an async server, you can call the old sync API in thread and use a task to run the new API:
task = asyncio.Task(call_new_api())
oldResp = await in_thread(call_old_api())
if task.done():
return task.result() # here you should keep in mind that task.result() may raise exception if the new api request failed, but that's probably ok for you
else:
task.cancel() # yes, but you should take care of the cancelling, see - https://stackoverflow.com/a/43810272/1113207
return oldResp
I think you can go even further and instead of always waiting for the old API to be completed, you can run both APIs concurrently and return the first that's done (in case new api works faster than the old one). With all checks and suggestions above, it should look something like this:
import asyncio
import random
import time
from contextlib import suppress
def call_old_api():
time.sleep(random.randint(0, 2))
return "OLD"
async def call_new_api():
await asyncio.sleep(random.randint(0, 2))
return "NEW"
async def in_thread(func):
loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, func)
async def ensure_cancelled(task):
task.cancel()
with suppress(asyncio.CancelledError):
await task
async def main():
old_api_task = asyncio.Task(in_thread(call_old_api))
new_api_task = asyncio.Task(call_new_api())
done, pending = await asyncio.wait(
[old_api_task, new_api_task], return_when=asyncio.FIRST_COMPLETED
)
if pending:
for task in pending:
await ensure_cancelled(task)
finished_task = done.pop()
res = finished_task.result()
print(res)
asyncio.run(main())
Question: when I call generateCSVFromIncidentIdsWithArgs(list) twice with 2 different lists lets say "list1" and "list2", though the first list response appears correctly, the second list response has the results of list1 as well. I am not sure which variable to reset before making the second call so that the second list call appears without mixing the first list results.
function definition: function fetches response from a url with provided IDs in list
async def fetch(self, url, incident, session, csv):
async with session.get(url) as response:
self.format_output(incident, await response.read())
async def bound_fetch(self, sem, url, incident, session, csv):
# Getter function with semaphore.
async with sem:
await self.fetch(url, incident, session, csv)
async def run(self, r, csv):
url = self.conversations_url
tasks = []
# create instance of Semaphore
sem = asyncio.Semaphore(1000)
sslcontext = ssl.create_default_context(cafile=certifi.where())
sslcontext.load_cert_chain('certificate.pem',
'plainkey.pem')
# Create client session that will ensure we dont open new connection
# per each request.
async with ClientSession(connector=aiohttp.TCPConnector(ssl=sslcontext)) as session:
for i in r:
# pass Semaphore and session to every GET request
task = asyncio.ensure_future(self.bound_fetch(sem, url + str(i), i, session, csv))
tasks.append(task)
responses = await asyncio.gather(*tasks)
return responses
function call:
def generateCSVFromIncidentIdsWithArgs(list):
incident_list = list
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
future = asyncio.ensure_future(run(incident_list, True))
loop.run_until_complete(future)
generateCSVFromIncidentIdsWithArgs(list1)
generateCSVFromIncidentIdsWithArgs(list2)
I have a streaming application that almost continuously takes the data given as input and sends an HTTP request using that value and does something with the returned value.
Obviously to speed things up I've used asyncio and aiohttp libraries in Python 3.7 to get the best performance, but it becomes hard to debug given how fast the data moves.
This is what my code looks like
'''
Gets the final requests
'''
async def apiRequest(info, url, session, reqType, post_data=''):
if reqType:
async with session.post(url, data = post_data) as response:
info['response'] = await response.text()
else:
async with session.get(url+post_data) as response:
info['response'] = await response.text()
logger.debug(info)
return info
'''
Loops through the batches and sends it for request
'''
async def main(data, listOfData):
tasks = []
async with ClientSession() as session:
for reqData in listOfData:
try:
task = asyncio.ensure_future(apiRequest(**reqData))
tasks.append(task)
except Exception as e:
print(e)
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
print(exc_type, fname, exc_tb.tb_lineno)
responses = await asyncio.gather(*tasks)
return responses #list of APIResponses
'''
Streams data in and prepares batches to send for requests
'''
async def Kconsumer(data, loop, batchsize=100):
consumer = AIOKafkaConsumer(**KafkaConfigs)
await consumer.start()
dataPoints = []
async for msg in consumer:
try:
sys.stdout.flush()
consumedMsg = loads(msg.value.decode('utf-8'))
if consumedMsg['tid']:
dataPoints.append(loads(msg.value.decode('utf-8')))
if len(dataPoints)==batchsize or time.time() - startTime>5:
'''
#1: The task below goes and sends HTTP GET requests in bulk using aiohttp
'''
task = asyncio.ensure_future(getRequests(data, dataPoints))
res = await asyncio.gather(*[task])
if task.done():
outputs = []
'''
#2: Does some ETL on the returned values
'''
ids = await asyncio.gather(*[doSomething(**{'tid':x['tid'],
'cid':x['cid'], 'tn':x['tn'],
'id':x['id'], 'ix':x['ix'],
'ac':x['ac'], 'output':to_dict(xmltodict.parse(x['response'],encoding='utf-8')),
'loop':loop, 'option':1}) for x in res[0]])
simplySaveDataIntoDataBase(id) # This is where I see some missing data in the database
dataPoints = []
except Exception as e:
logger.error(e)
logger.error(traceback.format_exc())
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
logger.error(str(exc_type) +' '+ str(fname) +' '+ str(exc_tb.tb_lineno))
if __name__ == '__main__':
loop = asyncio.get_event_loop()
asyncio.ensure_future(Kconsumer(data, loop, batchsize=100))
loop.run_forever()
Does the ensure_future need to be awaited ?
How does aiohttp handle requests that come a little later than the others? Shouldn't it hold the whole batch back instead of forgetting about it altoghter?
Does the ensure_future need to be awaited ?
Yes, and your code is doing that already. await asyncio.gather(*tasks) awaits the provided tasks and returns their results in the same order.
Note that await asyncio.gather(*[task]) doesn't make sense, because it is equivalent to await asyncio.gather(task), which is again equivalent to await task. In other words, when you need the result of getRequests(data, dataPoints), you can write res = await getRequests(data, dataPoints) without the ceremony of first calling ensure_future() and then calling gather().
In fact, you almost never need to call ensure_future yourself:
if you need to await multiple tasks, you can pass coroutine objects directly to gather, e.g. gather(coroutine1(), coroutine2()).
if you need to spawn a background task, you can call asyncio.create_task(coroutine(...))
How does aiohttp handle requests that come a little later than the others? Shouldn't it hold the whole batch back instead of forgetting about it altoghter?
If you use gather, all requests must finish before any of them return. (That is not aiohttp policy, it's how gather works.) If you need to implement a timeout, you can use asyncio.wait_for or similar.
I've a REST API running on Python 3.7 + Tornado 5, with postgresql as database, using aiopg with SQLAlchemy core (via the aiopg.sa binding). For the unit tests, I use py.test with pytest-tornado.
All the tests go ok as soon as no query to the database is involved, where I'd get this:
Runtime error: Task cb=[IOLoop.add_future..() at venv/lib/python3.7/site-packages/tornado/ioloop.py:719]> got Future attached to a different loop
The same code works fine out of the tests, I'm capable of handling 100s of requests so far.
This is part of an #auth decorator which will check the Authorization header for a JWT token, decode it and get the user's data and attach it to the request; this is the part for the query:
partner_id = payload['partner_id']
provided_scopes = payload.get("scope", [])
for scope in scopes:
if scope not in provided_scopes:
logger.error(
'Authentication failed, scopes are not compliant - '
'required: {} - '
'provided: {}'.format(scopes, provided_scopes)
)
raise ForbiddenException(
"insufficient permissions or wrong user."
)
db = self.settings['db']
partner = await Partner.get(db, username=partner_id)
# The user is authenticated at this stage, let's add
# the user info to the request so it can be used
if not partner:
raise UnauthorizedException('Unknown user from token')
p = Partner(**partner)
setattr(self.request, "partner_id", p.uuid)
setattr(self.request, "partner", p)
The .get() async method from Partner comes from the Base class for all models in the app. This is the .get method implementation:
#classmethod
async def get(cls, db, order=None, limit=None, offset=None, **kwargs):
"""
Get one instance that will match the criteria
:param db:
:param order:
:param limit:
:param offset:
:param kwargs:
:return:
"""
if len(kwargs) == 0:
return None
if not hasattr(cls, '__tablename__'):
raise InvalidModelException()
tbl = cls.__table__
instance = None
clause = cls.get_clause(**kwargs)
query = (tbl.select().where(text(clause)))
if order:
query = query.order_by(text(order))
if limit:
query = query.limit(limit)
if offset:
query = query.offset(offset)
logger.info(f'GET query executing:\n{query}')
try:
async with db.acquire() as conn:
async with conn.execute(query) as rows:
instance = await rows.first()
except DataError as de:
[...]
return instance
The .get() method above will either return a model instance (row representation) or None.
It uses the db.acquire() context manager, as described in aiopg's doc here: https://aiopg.readthedocs.io/en/stable/sa.html.
As described in this same doc, the sa.create_engine() method returns a connection pool, so the db.acquire() just uses one connection from the pool. I'm sharing this pool to every request in Tornado, they use it to perform the queries when they need it.
So this is the fixture I've set up in my conftest.py:
#pytest.fixture
async def db():
dbe = await setup_db()
return dbe
#pytest.fixture
def app(db, event_loop):
"""
Returns a valid testing Tornado Application instance.
:return:
"""
app = make_app(db)
settings.JWT_SECRET = 'its_secret_one'
return app
I can't find an explanation of why this is happening; Tornado's doc and source makes it clear that asyncIO event loop is used as default, and by debugging it I can see the event loop is indeed the same one, but for some reason it seems to get closed or stopped abruptly.
This is one test that fails:
#pytest.mark.gen_test(timeout=2)
def test_score_returns_204_empty(app, http_server, http_client, base_url):
score_url = '/'.join([base_url, URL_PREFIX, 'score'])
token = create_token('test', scopes=['score:get'])
headers = {
'Authorization': f'Bearer {token}',
'Accept': 'application/json',
}
response = yield http_client.fetch(score_url, headers=headers, raise_error=False)
assert response.code == 204
This test fails as it returns 401 instead of 204, given the query on the auth decorator fails due to the RuntimeError, which returns then an Unauthorized response.
Any idea from the async experts here will be very appreciated, I'm quite lost on this!!!
Well, after a lot of digging, testing and, of course, learning quite a lot about asyncio, I made it work myself. Thanks for the suggestions so far.
The issue was that the event_loop from asyncio was not running; as #hoefling mentioned, pytest itself does not support coroutines, but pytest-asyncio brings such a useful feature to your tests. This is very well explained here: https://medium.com/ideas-at-igenius/testing-asyncio-python-code-with-pytest-a2f3628f82bc
So, without pytest-asyncio, your async code that needs to be tested will look like this:
def test_this_is_an_async_test():
loop = asyncio.get_event_loop()
result = loop.run_until_complete(my_async_function(param1, param2, param3)
assert result == 'expected'
We use loop.run_until_complete() as, otherwise, the loop will never be running, as this is the way asyncio works by default (and pytest makes nothing to make it work differently).
With pytest-asyncio, your test works with the well-known async / await parts:
async def test_this_is_an_async_test(event_loop):
result = await my_async_function(param1, param2, param3)
assert result == 'expected'
pytest-asyncio in this case wraps the run_until_complete() call above, summarizing it heavily, so the event loop will run and be available for your async code to use it.
Please note: the event_loop parameter in the second case is not even necessary here, pytest-asyncio gives one available for your test.
On the other hand, when you are testing your Tornado app, you usually need to get a http server up and running during your tests, listening in a well-known port, etc., so the usual way goes by writing fixtures to get a http server, base_url (usually http://localhost:, with an unused port, etc etc).
pytest-tornado comes up as a very useful one, as it offers several of these fixtures for you: http_server, http_client, unused_port, base_url, etc.
Also to mention, it gets a pytest mark's gen_test() feature, which converts any standard test to use coroutines via yield, and even to assert it will run with a given timeout, like this:
#pytest.mark.gen_test(timeout=3)
def test_fetch_my_data(http_client, base_url):
result = yield http_client.fetch('/'.join([base_url, 'result']))
assert len(result) == 1000
But, this way it does not support async / await, and actually only Tornado's ioloop will be available via the io_loop fixture (although Tornado's ioloop uses by default asyncio underneath from Tornado 5.0), so you'd need to combine both pytest.mark.gen_test and pytest.mark.asyncio, but in the right order! (which I did fail).
Once I understood better what could be the problem, this was the next approach:
#pytest.mark.gen_test(timeout=2)
#pytest.mark.asyncio
async def test_score_returns_204_empty(http_client, base_url):
score_url = '/'.join([base_url, URL_PREFIX, 'score'])
token = create_token('test', scopes=['score:get'])
headers = {
'Authorization': f'Bearer {token}',
'Accept': 'application/json',
}
response = await http_client.fetch(score_url, headers=headers, raise_error=False)
assert response.code == 204
But this is utterly wrong, if you understand how Python's decorator wrappers work. With the code above, pytest-asyncio's coroutine is then wrapped in a pytest-tornado yield gen.coroutine, which won't get the event-loop running... so my tests were still failing with the same problem. Any query to the database were returning a Future waiting for an event loop to be running.
My updated code once I made myself up of the silly mistake:
#pytest.mark.asyncio
#pytest.mark.gen_test(timeout=2)
async def test_score_returns_204_empty(http_client, base_url):
score_url = '/'.join([base_url, URL_PREFIX, 'score'])
token = create_token('test', scopes=['score:get'])
headers = {
'Authorization': f'Bearer {token}',
'Accept': 'application/json',
}
response = await http_client.fetch(score_url, headers=headers, raise_error=False)
assert response.code == 204
In this case, the gen.coroutine is wrapped inside the pytest-asyncio coroutine, and the event_loop runs the coroutines as expected!
But there were still a minor issue that took me a little while to realize, too; pytest-asyncio's event_loop fixture creates for every test a new event loop, while pytest-tornado creates too a new IOloop. And the tests were still failing, but this time with a different error.
The conftest.py file now looks like this; please note I've re-declared the event_loop fixture to use the event_loop from pytest-tornado io_loop fixture itself (please recall pytest-tornado creates a new io_loop on each test function):
#pytest.fixture(scope='function')
def event_loop(io_loop):
loop = io_loop.current().asyncio_loop
yield loop
loop.stop()
#pytest.fixture(scope='function')
async def db():
dbe = await setup_db()
yield dbe
#pytest.fixture
def app(db):
"""
Returns a valid testing Tornado Application instance.
:return:
"""
app = make_app(db)
settings.JWT_SECRET = 'its_secret_one'
yield app
Now all my tests work, I'm back a happy man and very proud of my now better understanding of the asyncio way of life. Cool!
Due to some unusual constraints, I need to synchronously wait for a callback URL from another service before returning a response. Currently I have something resembling:
ROUTE = '/operation'
async def post(self):
##SOME OPERATIONS##
post_body = { 'callbackUrl' : 'myservice.com/cb' }
response = await other_service.post('/endpoint')
global my_return_value
my_return_value = None
while not my_return_value:
pass
return self.make_response(my_return_value)
Then I have a way to handle the callback URL something like:
ROUTE = '/cb'
async def post(self):
##OPERATIONS###
global my_return_value
my_return_value = some_value
return web.json_response()
The problem with this code is that it forever gets trapped in that while loop forever even if the callback URL gets invoked. I suspect there is a better way to do this, but I'm not sure how to go about it nor how to google for it. Any ideas?
Thanks in advance!
Just a quick scan, but I think you're trapped in
while not my_return_value:
pass
Python will be trapped there and not have time to deal with the callback function. What you need is
while not my_return_value:
await asyncio.sleep(1)
(or you can even do an asyncio.sleep(0) if you don't want the millisecond delay).
An even nicer way would be (and now I'm writing from memory, no guarantees...):
my_return_value = asyncio.get_event_loop().create_future()
await my_return_value
return self.make_response(my_return_value.result())
async def post(self):
##OPERATIONS###
my_return_value.set_result(some_value)
return web.json_response()
Note however that either way will break very much if there is ever more than one concurrent use of this system. It feels very fragile! Maybe even better:
ROUTE = '/operation'
my_return_value = {}
async def post(self):
##SOME OPERATIONS##
token = "%016x" % random.SystemRandom().randint(0, 2**128)
post_body = { 'callbackUrl' : 'myservice.com/cb?token='+token }
response = await other_service.post('/endpoint')
my_return_value[token] = asyncio.get_event_loop().create_future()
await my_return_value[token]
result = my_return_value[token].result()
del my_return_value[token]
return self.make_response(result)
async def post(self):
##OPERATIONS###
token = self.arguments("token")
my_return_value[token].set_result(some_value)
return web.json_response()
Now cherry on top would be a timer that would cancel the future after a timeout and clean up the entry in my_return_value after a while if the callback does not happen. Also, if you're going with my last suggestion, don't call it my_return_value but something like callback_future_by_token...