Livy has a batch log endpoint: GET /batches/{batchId}/log, pointed out in How to pull Spark jobs client logs submitted using Apache Livy batches POST method using AirFlow
As far as I can tell, these logs are the livy logs and not the spark driver logs. I have a print statement in a pyspark job which prints to driver log stdout.
I am able to find the driver log URL via the describe batch endpoint https://livy.incubator.apache.org/docs/latest/rest-api.html#batch: by visiting the json response['appInfo']['driverLogUrl'] URL and clicking through to the logs
The json response url looks like : http://ip-some-ip.emr.masternode:8042/node/containerlogs/container_1578061839438_0019_01_000001/livy/ and I can click through to an html page with the added url leaf: stdout/?start=-4096 to see the logs...
As it is, I can only get an HTML page of the stdout, does a JSON API like version of this stdout (and preferrably stderr too) exist in the yarn/emr/hadoop resource manager? Otherwise is livy able to retrieve these driver logs somehow?
Or, is this an issue because I am using cluster mode instead of client. When I try to use client mode, I've been unable to use python3 and the PYSPARK_PYTHON, which is maybe for a different question, but if I'm able to get the stdout of the driver using a different deployMode, then that would work too.
If it matters, I'm running the cluster with EMR
I meet the same problem.
The short answer is it will only work for the client mode, but not the cluster mode.
This is because we try to get all logs from the master node. But the print information is local and is from the driver node.
When the spark is running in the "client mode", the driver node is your master node, so we get both log info and print info as they are in the same physical machine
However, things are different when spark is running in the "cluster mode". In this case, the driver node is one of your worker node, not your master node. Therefore we lose the print info since livy only get info from the master node
You can fetch the all logs including stdout, stderr and yarn diagnostics by GET /batches/{batchId}. (as you can see through at a batch log endpoint)
Here are code examples:
# self.job is batch object returned by `POST /batches`
job_response = requests.get(self.job, headers=self.headers).json()
self.job_status = job_response['state']
print(f"Job status: {self.job_status}")
for log in job_response['log']:
print(log)
Printed logs are like this (note that it is a Spark job logs, not a livy logs):
20/01/10 05:28:57 INFO Client: Application report for application_1578623516978_0024 (state: ACCEPTED)
20/01/10 05:28:58 INFO Client: Application report for application_1578623516978_0024 (state: ACCEPTED)
20/01/10 05:28:59 INFO Client: Application report for application_1578623516978_0024 (state: RUNNING)
20/01/10 05:28:59 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: 10.2.100.6
ApplicationMaster RPC port: -1
queue: default
start time: 1578634135032
final status: UNDEFINED
tracking URL: http://ip-10-2-100-176.ap-northeast-2.compute.internal:20888/proxy/application_1578623516978_0024/
user: livy
20/01/10 05:28:59 INFO YarnClientSchedulerBackend: Application application_1578623516978_0024 has started running.
20/01/10 05:28:59 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 38087.
20/01/10 05:28:59 INFO NettyBlockTransferService: Server created on ip-10-2-100-176.ap-northeast-2.compute.internal:38087
20/01/10 05:28:59 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
20/01/10 05:28:59 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, ip-10-2-100-176.ap-northeast-2.compute.internal, 38087, None)
20/01/10 05:28:59 INFO BlockManagerMasterEndpoint: Registering block manager ip-10-2-100-176.ap-northeast-2.compute.internal:38087 with 5.4 GB RAM, BlockManagerId(driver, ip-10-2-100-176.ap-northeast-2.compute.internal, 38087, None)
20/01/10 05:28:59 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, ip-10-2-100-176.ap-northeast-2.compute.internal, 38087, None)
20/01/10 05:28:59 INFO BlockManager: external shuffle service port = 7337
20/01/10 05:28:59 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, ip-10-2-100-176.ap-northeast-2.compute.internal, 38087, None)
20/01/10 05:28:59 INFO YarnClientSchedulerBackend: Add WebUI Filter. org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter, Map(PROXY_HOSTS -> ip-10-2-100-176.ap-northeast-2.compute.internal, PROXY_URI_BASES -> http://ip-10-2-100-176.ap-northeast-2.compute.internal:20888/proxy/application_1578623516978_0024), /proxy/application_1578623516978_0024
20/01/10 05:28:59 INFO JettyUtils: Adding filter org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter to /jobs, /jobs/json, /jobs/job, /jobs/job/json, /stages, /stages/json, /stages/stage, /stages/stage/json, /stages/pool, /stages/pool/json, /storage, /storage/json, /storage/rdd, /storage/rdd/json, /environment, /environment/json, /executors, /executors/json, /executors/threadDump, /executors/threadDump/json, /static, /, /api, /jobs/job/kill, /stages/stage/kill.
20/01/10 05:28:59 INFO JettyUtils: Adding filter org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter to /metrics/json.
20/01/10 05:28:59 INFO YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as NettyRpcEndpointRef(spark-client://YarnAM)
20/01/10 05:28:59 INFO EventLoggingListener: Logging events to hdfs:/var/log/spark/apps/application_1578623516978_0024
20/01/10 05:28:59 INFO YarnClientSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
20/01/10 05:28:59 INFO SharedState: loading hive config file: file:/etc/spark/conf.dist/hive-site.xml
...
Please check the Livy docs for REST API for further information.
Related
I've been trying to create a new spark session with Livy 0.7 server that runs on Ubuntu 18.04.
On that same machine I have a running spark cluster with 2 workers and I'm able to create a normal spark-session.
My problem is that after running the following request to Livy server the session stays stuck on starting state:
import json, pprint, requests, textwrap
host = 'http://localhost:8998'
data = {'kind': 'spark'}
headers = {'Content-Type': 'application/json'}
r = requests.post(host + '/sessions', data=json.dumps(data), headers=headers)
r.json()
I can see that the session is starting and created the spark session from the session log:
20/06/03 13:52:31 INFO SparkEntries: Spark context finished initialization in 5197ms
20/06/03 13:52:31 INFO SparkEntries: Created Spark session.
20/06/03 13:52:46 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (xxx.xx.xx.xxx:1828) with ID 0
20/06/03 13:52:47 INFO BlockManagerMasterEndpoint: Registering block manager xxx.xx.xx.xxx:1830 with 434.4 MB RAM, BlockManagerId(0, xxx.xx.xx.xxx, 1830, None)
and also from the spark master UI:
and after the livy.rsc.server.idle-timeout is reached the session log then outputs:
20/06/03 14:28:04 WARN RSCDriver: Shutting down RSC due to idle timeout (10m).
20/06/03 14:28:04 INFO SparkUI: Stopped Spark web UI at http://172.17.52.209:4040
20/06/03 14:28:04 INFO StandaloneSchedulerBackend: Shutting down all executors
20/06/03 14:28:04 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Asking each executor to shut down
20/06/03 14:28:04 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
20/06/03 14:28:04 INFO MemoryStore: MemoryStore cleared
20/06/03 14:28:04 INFO BlockManager: BlockManager stopped
20/06/03 14:28:04 INFO BlockManagerMaster: BlockManagerMaster stopped
20/06/03 14:28:04 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
20/06/03 14:28:04 INFO SparkContext: Successfully stopped SparkContext
20/06/03 14:28:04 INFO SparkContext: SparkContext already stopped.
and after that the dies :(
I already tried increasing the driver timeout with no luck, and didn't find any known issues like that
my guess it has something to do with the spark driver connectivity to the rsc but I have no idea where to configure that
Anyone knows the reason/solution for that?
We faced a similar problem in one of our environments. The only difference between the working and non-working env was spark master setting in livy.conf file.
I removed the config livy.spark.master=yarn from livy.conf and set this value from the code itself.
// pass master as yarn
public static JavaSparkContext getSparkContext(final String master, final String appName) {
LOGGER.info("Creating spark context");
SparkConf conf = new SparkConf().setAppName(appName);
if (Strings.isNullOrEmpty(master)) {
LOGGER.warn("No spark master found setting local!!");
conf.setMaster("local");
} else {
conf.setMaster(master);
}
conf.set("spark.submit.deployMode", "client");
return new JavaSparkContext(conf);
}
This worked for me.
It would help if anyone can point out, how this worked for me.
Good morning,
it maybe sounds like a stupid question, but I would like to access a temporary table in Spark by RStudio. I don't have any Spark cluster, and I only run everything local on my PC.
When I start Spark through IntelliJ, the instance is running fine:
17/11/11 10:11:33 INFO Utils: Successfully started service 'sparkDriver' on port 59505.
17/11/11 10:11:33 INFO SparkEnv: Registering MapOutputTracker
17/11/11 10:11:33 INFO SparkEnv: Registering BlockManagerMaster
17/11/11 10:11:33 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
17/11/11 10:11:33 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
17/11/11 10:11:33 INFO DiskBlockManager: Created local directory at C:\Users\stephan\AppData\Local\Temp\blockmgr-7ca4e8fb-9456-4063-bc6d-39324d7dad4c
17/11/11 10:11:33 INFO MemoryStore: MemoryStore started with capacity 898.5 MB
17/11/11 10:11:33 INFO SparkEnv: Registering OutputCommitCoordinator
17/11/11 10:11:33 INFO Utils: Successfully started service 'SparkUI' on port 4040.
17/11/11 10:11:34 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://172.25.240.1:4040
17/11/11 10:11:34 INFO Executor: Starting executor ID driver on host localhost
17/11/11 10:11:34 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 59516.
17/11/11 10:11:34 INFO NettyBlockTransferService: Server created on 172.25.240.1:59516
But I am not sure about the port, I have to choose in RStudio/sparklyr:
sc <- spark_connect(master = "spark://localhost:7077", spark_home = "C://Users//stephan//Downloads//spark//spark-2.2.0-bin-hadoop2.7", version = "2.2.0")
Error in file(con, "r") : cannot open the connection
In addition: Warning message:
In file(con, "r") :
cannot open file 'C:\Users\stephan\AppData\Local\Temp\Rtmp61Ejow\file2fa024ce51af_spark.log': Permission denied
I tried different ports, like 59516, 4040, ... but all led to the same result. The permission denied message I guess can be ignored due that the file is written fine:
17/11/11 01:07:30 WARN StandaloneAppClient$ClientEndpoint: Failed to connect to master localhost:7077
Can please anyone assist me, how I can establish a connection between a local running Spark and RStudio, but without that RStudio is running another Spark instance?
Thanks
Stephan
Running standalone Spark cluster is not the same thing as running Spark in local mode in your IDE, which is likely the case here. local mode doesn't create any persistent services.
To run your own "pseudodistributed" cluster:
Download Spark binaries.
Start Spark master using $SPARK_HOME/sbin/start-master.sh script.
Start Spark worker using $SPARK_HOME/sbin/start-slave.sh script and passing master url.
To be able to share tables you'll also need a proper metastore (not Derby).
I am trying to kill my spark-kafka streaming job from Spark UI. It is able to kill the application but the driver is still running.
Can anyone help me with this. I am good with my other streaming jobs. only one of the streaming jobs is giving this problem ever time.
I can't kill the driver through command or spark UI. Spark Master is alive.
Output i collected from logs is -
16/10/25 03:14:25 INFO BlockManagerMaster: Removed 0 successfully in removeExecutor
16/10/25 03:14:25 INFO SparkUI: Stopped Spark web UI at http://***:4040
16/10/25 03:14:25 INFO SparkDeploySchedulerBackend: Shutting down all executors
16/10/25 03:14:25 INFO SparkDeploySchedulerBackend: Asking each executor to shut down
16/10/25 03:14:35 INFO AppClient: Stop request to Master timed out; it may already be shut down.
16/10/25 03:14:35 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
16/10/25 03:14:35 INFO MemoryStore: MemoryStore cleared
16/10/25 03:14:35 INFO BlockManager: BlockManager stopped
16/10/25 03:14:35 INFO BlockManagerMaster: BlockManagerMaster stopped
16/10/25 03:14:35 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
16/10/25 03:14:35 INFO SparkContext: Successfully stopped SparkContext
16/10/25 03:14:35 ERROR Inbox: Ignoring error
org.apache.spark.SparkException: Exiting due to error from cluster scheduler: Master removed our application: KILLED
at org.apache.spark.scheduler.TaskSchedulerImpl.error(TaskSchedulerImpl.scala:438)
at org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend.dead(SparkDeploySchedulerBackend.scala:124)
at org.apache.spark.deploy.client.AppClient$ClientEndpoint.markDead(AppClient.scala:264)
at org.apache.spark.deploy.client.AppClient$ClientEndpoint$$anonfun$receive$1.applyOrElse(AppClient.scala:172)
at org.apache.spark.rpc.netty.Inbox$$anonfun$process$1.apply$mcV$sp(Inbox.scala:116)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:204)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:215)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
16/10/25 03:14:35 WARN NettyRpcEnv: Ignored message: true
16/10/25 03:14:35 WARN AppClient$ClientEndpoint: Connection to master:7077 failed; waiting for master to reconnect...
16/10/25 03:14:35 WARN AppClient$ClientEndpoint: Connection to master:7077 failed; waiting for master to reconnect...
Get the running driverId from spark UI, and hit the post rest call(spark master rest port like 6066) to kill the pipeline. I have tested it with spark 1.6.1
curl -X POST http://localhost:6066/v1/submissions/kill/driverId
Hope it helps...
I am trying to do a very simple setup with Spark using SSH tunneling and I can't make it work.
I have master running on my PC, with this setup ./sbin/start-master.sh -h localhost -p 7077 (if not stated otherwise, everything else is default).
On my slave PC (IP is 192.168.0.222), which is in other domain and I don't have a root access to it, I made ssh -N -L localhost:7078:localhost:7077 myMasterPCSSHalias and run slave with ./sbin/start-slave.sh spark://localhost:7078. I can now see this slave on the dashboard at http://localhost:8080/ in my browser. I see that it has 14GB of free memory.
When I then try e.g. this example:
./bin/spark-submit --master spark://localhost:7077 examples/src/main/python/pi.py 10
it hangs on this message until I kill it (you can see the full log message below):
WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
I am sure I am not using more resources than I have available, the problem still persists even though I use --executor-memory 512m and running executor is just signalling RUNNING state. The only thing in error log is this:
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/05/09 22:45:44 INFO CoarseGrainedExecutorBackend: Registered signal handlers for [TERM, HUP, INT]
16/05/09 22:45:44 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/05/09 22:45:45 INFO SecurityManager: Changing view acls to: hnykdan1,dan
16/05/09 22:45:45 INFO SecurityManager: Changing modify acls to: hnykdan1,dan
16/05/09 22:45:45 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hnykdan1, dan); users with modify permissions: Set(hnykdan1, dan)
and in slave log is this:
16/05/09 22:48:56 INFO Worker: Asked to launch executor app-20160509224034-0013/0 for PythonPi
16/05/09 22:48:56 INFO SecurityManager: Changing view acls to: hnykdan1
16/05/09 22:48:56 INFO SecurityManager: Changing modify acls to: hnykdan1
16/05/09 22:48:56 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hnykdan1); users with modify permissions: Set(hnykdan1)
16/05/09 22:48:56 INFO ExecutorRunner: Launch command: "/usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java" "-cp" "/home/hnykdan1/spark/conf/:/home/hnykdan1/spark/lib/spark-assembly-1.6.1-hadoop2.6.0.jar:/home/hnykdan1/spark/lib/datanucleus-core-3.2.10.jar:/home/hnykdan1/spark/lib/datanucleus-api-jdo-3.2.6.jar:/home/hnykdan1/spark/lib/datanucleus-rdbms-3.2.9.jar" "-Xms1024M" "-Xmx1024M" "-Dspark.driver.port=37450" "-XX:MaxPermSize=256m" "org.apache.spark.executor.CoarseGrainedExecutorBackend" "--driver-url" "spark://CoarseGrainedScheduler#192.168.0.222:37450" "--executor-id" "0" "--hostname" "147.32.8.103" "--cores" "8" "--app-id" "app-20160509224034-0013" "--worker-url" "spark://Worker#147.32.8.103:54894"
Everything looks quite normal and I don't know where might be a problem. Do I need to tunnel even the other way around? It runs fine when I run slave locally in the exactly same fashion. Thanks
Full Log from console
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/05/09 22:28:21 INFO SparkContext: Running Spark version 1.6.1
16/05/09 22:28:21 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/05/09 22:28:22 INFO SecurityManager: Changing view acls to: dan
16/05/09 22:28:22 INFO SecurityManager: Changing modify acls to: dan
16/05/09 22:28:22 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(dan); users with modify permissions: Set(dan)
16/05/09 22:28:22 INFO Utils: Successfully started service 'sparkDriver' on port 34508.
16/05/09 22:28:23 INFO Slf4jLogger: Slf4jLogger started
16/05/09 22:28:23 INFO Remoting: Starting remoting
16/05/09 22:28:23 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem#192.168.0.222:44359]
16/05/09 22:28:23 INFO Utils: Successfully started service 'sparkDriverActorSystem' on port 44359.
16/05/09 22:28:23 INFO SparkEnv: Registering MapOutputTracker
16/05/09 22:28:23 INFO SparkEnv: Registering BlockManagerMaster
16/05/09 22:28:23 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-db4c3293-423f-4966-a479-b69a90439da9
16/05/09 22:28:23 INFO MemoryStore: MemoryStore started with capacity 511.1 MB
16/05/09 22:28:23 INFO SparkEnv: Registering OutputCommitCoordinator
16/05/09 22:28:24 INFO Utils: Successfully started service 'SparkUI' on port 4040.
16/05/09 22:28:24 INFO SparkUI: Started SparkUI at http://192.168.0.222:4040
16/05/09 22:28:24 INFO HttpFileServer: HTTP File server directory is /tmp/spark-d532a9c1-0455-4937-ad27-b47abb2a65e8/httpd-aa031b8c-f605-41c3-aabe-fc4fe01bdcf8
16/05/09 22:28:24 INFO HttpServer: Starting HTTP Server
16/05/09 22:28:24 INFO Utils: Successfully started service 'HTTP file server' on port 41770.
16/05/09 22:28:24 INFO Utils: Copying /home/hnykdan1/spark/examples/src/main/python/pi.py to /tmp/spark-d532a9c1-0455-4937-ad27-b47abb2a65e8/userFiles-14720bed-cd41-4b15-9bd3-38dbf4f268ff/pi.py
16/05/09 22:28:24 INFO SparkContext: Added file file:/home/hnykdan1/spark/examples/src/main/python/pi.py at http://192.168.0.222:41770/files/pi.py with timestamp 1462825704629
16/05/09 22:28:24 INFO AppClient$ClientEndpoint: Connecting to master spark://localhost:7077...
16/05/09 22:28:24 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20160509222824-0011
16/05/09 22:28:24 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 44617.
16/05/09 22:28:24 INFO NettyBlockTransferService: Server created on 44617
16/05/09 22:28:24 INFO AppClient$ClientEndpoint: Executor added: app-20160509222824-0011/0 on worker-20160509214654-147.32.8.103-54894 (147.32.8.103:54894) with 8 cores
16/05/09 22:28:24 INFO BlockManagerMaster: Trying to register BlockManager
16/05/09 22:28:24 INFO SparkDeploySchedulerBackend: Granted executor ID app-20160509222824-0011/0 on hostPort 147.32.8.103:54894 with 8 cores, 1024.0 MB RAM
16/05/09 22:28:24 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.0.222:44617 with 511.1 MB RAM, BlockManagerId(driver, 192.168.0.222, 44617)
16/05/09 22:28:24 INFO BlockManagerMaster: Registered BlockManager
16/05/09 22:28:25 INFO AppClient$ClientEndpoint: Executor updated: app-20160509222824-0011/0 is now RUNNING
16/05/09 22:28:25 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
16/05/09 22:28:25 INFO SparkContext: Starting job: reduce at /home/hnykdan1/spark/examples/src/main/python/pi.py:39
16/05/09 22:28:25 INFO DAGScheduler: Got job 0 (reduce at /home/hnykdan1/spark/examples/src/main/python/pi.py:39) with 10 output partitions
16/05/09 22:28:25 INFO DAGScheduler: Final stage: ResultStage 0 (reduce at /home/hnykdan1/spark/examples/src/main/python/pi.py:39)
16/05/09 22:28:25 INFO DAGScheduler: Parents of final stage: List()
16/05/09 22:28:25 INFO DAGScheduler: Missing parents: List()
16/05/09 22:28:25 INFO DAGScheduler: Submitting ResultStage 0 (PythonRDD[1] at reduce at /home/hnykdan1/spark/examples/src/main/python/pi.py:39), which has no missing parents
16/05/09 22:28:26 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 4.0 KB, free 4.0 KB)
16/05/09 22:28:26 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 2.7 KB, free 6.7 KB)
16/05/09 22:28:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.0.222:44617 (size: 2.7 KB, free: 511.1 MB)
16/05/09 22:28:26 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006
16/05/09 22:28:26 INFO DAGScheduler: Submitting 10 missing tasks from ResultStage 0 (PythonRDD[1] at reduce at /home/hnykdan1/spark/examples/src/main/python/pi.py:39)
16/05/09 22:28:26 INFO TaskSchedulerImpl: Adding task set 0.0 with 10 tasks
16/05/09 22:28:41 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
16/05/09 22:28:56 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
16/05/09 22:29:11 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
16/05/09 22:29:26 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
16/05/09 22:29:41 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
16/05/09 22:29:56 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
16/05/09 22:30:11 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
16/05/09 22:30:26 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
Since you checked that you have the resources, the next most likely problem is that the executor cannot connect back to the driver. When submitting a job, the driver starts a server that the executor will connect to in order to download the jar(s).
Yes, the error message (Initial job has not accepted any resources...) does not look related to network problem. This is a known issue discussed for example here:
https://github.com/databricks/spark-knowledgebase/issues/9
It's probably related to the network (security groups rules). It's a silly test, but I just made it work by opening master and workers to all TCP traffic (inbound/outbound).
Goal
Run our scala spark app jar on yarn-cluster mode. It works with standalone cluster mode and with yarn-client, but for some reason it does not run to completion for yarn-cluster mode.
Details
The last portion of the code it seems to execute is on assigning the initial value to the Dataframe when reading the input file. It looks like it does not do anything after that. None of the logs look abnormal and there are no Warns or errors either. It suddenly gets unregistered with status succeeded and everything gets killed. On any other deployment mode (eg. yarn-client, standalone cluster mode) everything runs smoothly to completion.
15/07/22 15:57:00 INFO yarn.ApplicationMaster: Unregistering ApplicationMaster with SUCCEEDED
I have also ran this job on spark 1.3.x and 1.4.x on a vanilla spark/YARN cluster and a cdh 5.4.3 cluster as well. All with the same results. What could possibly be the issue?
Job was run with the command below and the input file is accessible through hdfs.
bin/spark-submit --master yarn-cluster --class AssocApp ../associationRulesScala/target/scala-2.10/AssociationRule_2.10.4-1.0.0.SNAPSHOT.jar hdfs://sparkMaster-hk:9000/user/root/BreastCancer.csv
Code snippets
this is the code in the area were the dataframe is loaded. It spits out the log message "Uploading Dataframe..." but there is nothing else after that. Refer to the driver's logs below
//...
logger.info("Uploading Dataframe from %s".format(filename))
sparkParams.sqlContext.csvFile(filename)
MDC.put("jobID",jobID.takeRight(3))
logger.info("Extracting Unique Vals from each of %d columns...".format(frame.columns.length))
private val uniqueVals = frame.columns.zipWithIndex.map(colname => (colname._2, colname._1, frame.select(colname._1).distinct.cache)).
//...
Driver logs
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/tmp/hadoop-root/nm-local-dir/usercache/root/filecache/60/spark-assembly-1.4.0-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/root/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
15/07/22 15:56:52 INFO yarn.ApplicationMaster: Registered signal handlers for [TERM, HUP, INT]
15/07/22 15:56:54 INFO yarn.ApplicationMaster: ApplicationAttemptId: appattempt_1434116948302_0097_000001
15/07/22 15:56:55 INFO spark.SecurityManager: Changing view acls to: root
15/07/22 15:56:55 INFO spark.SecurityManager: Changing modify acls to: root
15/07/22 15:56:55 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
15/07/22 15:56:55 INFO yarn.ApplicationMaster: Starting the user application in a separate Thread
15/07/22 15:56:55 INFO yarn.ApplicationMaster: Waiting for spark context initialization
15/07/22 15:56:55 INFO yarn.ApplicationMaster: Waiting for spark context initialization ...
15/07/22 15:56:56 INFO AssocApp$: Starting new Association Rules calculation. From File: hdfs://sparkMaster-hk:9000/user/root/BreastCancer.csv
15/07/22 15:56:56 INFO yarn.ApplicationMaster: Final app status: SUCCEEDED, exitCode: 0
15/07/22 15:56:57 INFO associationRules.primaryPackageSpark: Uploading Dataframe from hdfs://sparkMaster-hk:9000/user/root/BreastCancer.csv
15/07/22 15:56:57 INFO spark.SparkContext: Running Spark version 1.4.0
15/07/22 15:56:57 INFO spark.SecurityManager: Changing view acls to: root
15/07/22 15:56:57 INFO spark.SecurityManager: Changing modify acls to: root
15/07/22 15:56:57 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
15/07/22 15:56:57 INFO slf4j.Slf4jLogger: Slf4jLogger started
15/07/22 15:56:57 INFO Remoting: Starting remoting
15/07/22 15:56:57 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver#119.81.232.13:41459]
15/07/22 15:56:57 INFO util.Utils: Successfully started service 'sparkDriver' on port 41459.
15/07/22 15:56:57 INFO spark.SparkEnv: Registering MapOutputTracker
15/07/22 15:56:57 INFO spark.SparkEnv: Registering BlockManagerMaster
15/07/22 15:56:57 INFO storage.DiskBlockManager: Created local directory at /tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1434116948302_0097/blockmgr-f0e66040-1fdb-4a05-87e1-160194829f84
15/07/22 15:56:57 INFO storage.MemoryStore: MemoryStore started with capacity 267.3 MB
15/07/22 15:56:58 INFO spark.HttpFileServer: HTTP File server directory is /tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1434116948302_0097/httpd-79b304a1-3cf4-4951-9e22-bbdfac435824
15/07/22 15:56:58 INFO spark.HttpServer: Starting HTTP Server
15/07/22 15:56:58 INFO server.Server: jetty-8.y.z-SNAPSHOT
15/07/22 15:56:58 INFO server.AbstractConnector: Started SocketConnector#0.0.0.0:36021
15/07/22 15:56:58 INFO util.Utils: Successfully started service 'HTTP file server' on port 36021.
15/07/22 15:56:58 INFO spark.SparkEnv: Registering OutputCommitCoordinator
15/07/22 15:56:58 INFO ui.JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter
15/07/22 15:56:58 INFO server.Server: jetty-8.y.z-SNAPSHOT
15/07/22 15:56:58 INFO server.AbstractConnector: Started SelectChannelConnector#0.0.0.0:53274
15/07/22 15:56:58 INFO util.Utils: Successfully started service 'SparkUI' on port 53274.
15/07/22 15:56:58 INFO ui.SparkUI: Started SparkUI at http://119.XX.XXX.XX:53274
15/07/22 15:56:58 INFO cluster.YarnClusterScheduler: Created YarnClusterScheduler
15/07/22 15:56:59 INFO util.Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 34498.
15/07/22 15:56:59 INFO netty.NettyBlockTransferService: Server created on 34498
15/07/22 15:56:59 INFO storage.BlockManagerMaster: Trying to register BlockManager
15/07/22 15:56:59 INFO storage.BlockManagerMasterEndpoint: Registering block manager 119.81.232.13:34498 with 267.3 MB RAM, BlockManagerId(driver, 119.81.232.13, 34498)
15/07/22 15:56:59 INFO storage.BlockManagerMaster: Registered BlockManager
15/07/22 15:56:59 INFO cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as AkkaRpcEndpointRef(Actor[akka://sparkDriver/user/YarnAM#-819146876])
15/07/22 15:56:59 INFO client.RMProxy: Connecting to ResourceManager at sparkMaster-hk/119.81.232.24:8030
15/07/22 15:56:59 INFO yarn.YarnRMClient: Registering the ApplicationMaster
15/07/22 15:57:00 INFO yarn.YarnAllocator: Will request 2 executor containers, each with 1 cores and 1408 MB memory including 384 MB overhead
15/07/22 15:57:00 INFO yarn.YarnAllocator: Container request (host: Any, capability: <memory:1408, vCores:1>)
15/07/22 15:57:00 INFO yarn.YarnAllocator: Container request (host: Any, capability: <memory:1408, vCores:1>)
15/07/22 15:57:00 INFO yarn.ApplicationMaster: Started progress reporter thread - sleep time : 5000
15/07/22 15:57:00 INFO yarn.ApplicationMaster: Unregistering ApplicationMaster with SUCCEEDED
15/07/22 15:57:00 INFO impl.AMRMClientImpl: Waiting for application to be successfully unregistered.
15/07/22 15:57:00 INFO yarn.ApplicationMaster: Deleting staging directory .sparkStaging/application_1434116948302_0097
15/07/22 15:57:00 INFO storage.DiskBlockManager: Shutdown hook called
15/07/22 15:57:00 INFO util.Utils: Shutdown hook called
15/07/22 15:57:00 INFO util.Utils: Deleting directory /tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1434116948302_0097/httpd-79b304a1-3cf4-4951-9e22-bbdfac435824
15/07/22 15:57:00 INFO util.Utils: Deleting directory /tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1434116948302_0097/userFiles-e01b4dd2-681c-4108-aec6-879774652c7a