I was going through the tutorial of speech emotion recognition and in between saw an "MLPClassifier(Multilayer_perceptron)" which was imported from the sklearn. And there are lots of other like Random forest and linear Regression, standardscalar, GridSearchCV, etc. I was searching for tutorials or steps to how can I create these types of classifiers or modules on my own?
When I searched regarding these, I was getting examples of tutorials of the use cases of predefined classifiers of sklearn and third party claassifiers. Like above specified.
If you guys know any tutorial or steps to achieve these please suggest to me.
Fro MLP, The implementation is quite easy, there is good explanation on how to implement on the Coursera's ML introdcution look to week 4 and week 5, for Linear and logistic regression look to week 2 and week 3. Look at this link for implementing CART, random forests are quite similar I think you can figure out how to implement them easily if you are able to implement CART. For SVM and kernel methods you can look to this repo
Related
I'm interested in NLP and I come up with Tensorflow and Bert, both seem to be from Google and both seem to be the best thing for Sentiment Analysis as of today but I don't understand what are they exactly and what is the difference between them... Can someone explain?
Tensorflow is an open-source library for machine learning that will let you build a deep learning model/architecture. But the BERT is one of the architectures itself. You can build many models using TensorFlow including RNN, LSTM, and even the BERT. The transformers like the BERT are a good choice if you just want to deploy a model on your data and you don't care about the deep learning field itself. For this purpose, I recommended the HuggingFace library that provides a straightforward way to employ a transformer model in just a few lines of code. But if you want to take a deeper look at these models, I will suggest you to learns about the well-known deep learning architectures for text data like RNN, LSTM, CNN, etc., and try to implement them using an ML library like Tensorflow or PyTorch.
Bert and Tensorflow is not different thing , There are not only 2, but many implementations of BERT. Most are basically equivalent.
The implementations that you mentioned are:
The original code by Google, in Tensorflow. https://github.com/google-research/bert
Implementation by Huggingface, in Pytorch and Tensorflow, that reproduces the same results as the original implementation and uses the same checkpoints as the original BERT article. https://github.com/huggingface/transformers
These are the differences regarding different aspects:
In terms of results, there is no difference in using one or the other, as they both use the same checkpoints (same weights) and their results have been checked to be equal.
In terms of reusability, HuggingFace library is probably more reusable, as it is designed specifically for that. Also, it gives you the freedom of choosing TensorFlow or Pytorch as deep learning framework.
In terms of performance, they should be the same.
In terms of community support (e.g. asking questions in github or stackoverflow about them), HuggingFace library is better suited, as there are a lot of people using it.
Apart from BERT, the transformers library by HuggingFace has implementations for lots of models: OpenAI GPT-2, RoBERTa, ELECTRA, ...
Good day, I am a student that is interested in NLP. I have come across the demo on AllenNLP's homepage, which stated that:
The model is a simple LSTM using GloVe embeddings that is trained on the binary classification setting of the Stanford Sentiment Treebank. It achieves about 87% accuracy on the test set.
Is there any reference to the sample code or any tutorial that I can follow to replicate this result, so that I can learn more about this subject? I am trying to obtain a Regression Output (Instead of classification).
I hope that someone can point me in the right direction.. Any help is much appreciated. Thank you!
AllenAI provides all code for examples and lib opensource on Git, including AllenNLP.
I found exactly how the example was run here: https://github.com/allenai/allennlp/blob/master/allennlp/tests/data/dataset_readers/stanford_sentiment_tree_bank_test.py
However, to make it a Regression task, you'll have to tweak directly on Pytorch, which is the underlying technology for AllenNLP.
How to use the Inception V3 tensorflow module to train with our own requirement dataset images. Say for example I want to train the Inception V3 module with the different cool drinkcompany brands Pepsi, Sprite etc.. How it can be achieved..??
In the link https://github.com/tensorflow/models/tree/master/inception they have explained with the ImageNet. I am bit confused with that. Please explain the stuff.
I suggest you to check Transfer Learning. which consists in retrain only the last layers with new categories
How to Retrain Inception's Final Layer for New Categories
Baptiste's answer linking to the Tensorflow site is good. This is a very broad question and his link is a good start.
If you'd like something a little more step-by-step then the Tensorflow for Poets tutorial is basically the same but doesn't require the use of Bazel commands. It initially uses flowers but you can use whatever dataset you want.
There are many other examples and tutorials on the web. I found some more with a quick search including this page and this video.
Good Luck!
I would like to implement Leave-one-out CV with scikit learn, but do not understand the guidelines on scikit learn internet site. I have 10 articles classified into two classes, five articles in each class. Do not know how to proceed after importing the articles with load_files option.
Some brainstorming would be appreciated.
Thanks
Objective: a node.js function that can be passed a news article (title, text, tags, etc.) and will return a category for that article ("Technology", "Fashion", "Food", etc.)
I'm not picky about exactly what categories are returned, as long as the list of possible results is finite and reasonable (10-50).
There are Web APIs that do this (eg, alchemy), but I'd prefer not to incur the extra cost (both in terms of external HTTP requests and also $$) if possible.
I've had a look at the node module "natural". I'm a bit new to NLP, but it seems like maybe I could achieve this by training a BayesClassifier on a reasonable word list. Does this seem like a good/logical approach? Can you think of anything better?
I don't know if you are still looking for an answer, but let me put my two cents for anyone who happens to come back to this question.
Having worked in NLP i would suggest you look into the following approach to solve the problem.
Don't look for a single package solution. There are great packages out there, no doubt for lots of things. But when it comes to active research areas like NLP, ML and optimization, the tools tend to be atleast 3 or 4 iterations behind whats there is academia.
Coming to the core problem. What you want to achieve is text classification.
The simplest way to achieve this would be an SVM multiclass classifier.
Simplest yes, but also with very very (see the double stress) reasonable classification accuracy, runtime performance and ease of use.
The thing which you would need to work on would be the feature set used to represent your news article/text/tag. You could use a bag of words model. add named entities as additional features. You can use article location/time as features. (though for a simple category classification this might not give you much improvement).
The bottom line is. SVM works great. they have multiple implementations. and during runtime you don't really need much ML machinery.
Feature engineering on the other hand is very task specific. But given some basic set of features and a good labelled data you can train a very decent classifier.
here are some resources for you.
http://svmlight.joachims.org/
SVM multiclass is what you would be interested in.
And here is a tutorial by SVM zen himself!
http://www.cs.cornell.edu/People/tj/publications/joachims_98a.pdf
I don't know about the stability of this but from the code its a binary classifier SVM. which means if you have a known set of tags of size N you want to classify the text into, you will have to train N binary SVM classifiers. One each for the N category tags.
Hope this helps.