Change date to next trading date - python-3.x

I have two tables:
-event dates
-return dates
Some event dates are not at a trading day.
How can I change the event date to the next trading day?
So if event date is not in return dates, take the next day in return dates.
The approach to change weekend days to working days does not work because of days like Christmas.
The best would be to look up the next day in the return table.
for i in event['date']:
if i is not in return ['date'].values:
event ['date']=i+datetime.timedelta(days=1)
but this doenst work
I am working with dataframes and dates have the format datetime64[ns]. If the event date does not exist in return date than event date plus one day

Edit
After the clarifications concerning the desired logic, here is the new solution
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
# Create two df
event_date = datetime.now()
event_dates = pd.DataFrame([datetime(2020, 2, _) for _ in range(1, 29)], columns=['date'])
print(event_dates.date[0])
# 2020-02-01 00:00:00
return_dates = pd.DataFrame([datetime(2020, 1, _) for _ in range(1, 32)], columns=['date'])
# Apply logic
event_dates.date = [_ if _ in return_dates.date else _ + timedelta(days=1) for _ in event_dates.date]
print(event_dates.date[0])
# 2020-02-02 00:00:00
Base Python
Here is a solution using the standard datetime library
from datetime import datetime
from typing import List
def get_next_trade_date(date: datetime, date_list: List[datetime]) -> datetime: # The annotations here are just to specify the types of the objects
if date in date_list: # Check if the date is contained in the list
return date
delta, res = None, None # Initialize both to None
for _ in date_list:
tmp = abs((date - _).days) # Time difference in current iteration
if not delta or tmp < delta: # See bullet point 1.
delta, res = tmp, _
return res
if __name__ == '__main__':
event_date = datetime.now()
return_dates = [datetime(2020, 1, _) for _ in range(1, 32)]
print(get_next_trade_date(event_date, return_dates))
# 2020-01-01 00:00:00
Notice that
The condition not delta or tmp < delta is twofold: in the first iteration delta, res are both None so we will overwrite them with tmp, _. We catch this by using not delta. The other part (tmp < delta) is more obvious: if we have a new minimal delta then we overwrite delta, res.
I only considered days intervals ((date - _).days), you could go further into details (see datetime.timedelta for more info)
coming from R I believe there must be a simpler solution using numpy - see below
Numpy
This solution uses numpy. (date_list - date) is an array of timedeltas, (date_list - date).argmin() returns the index of the minimal value.
from datetime import datetime
import numpy as np
def get_next_trade_date(date: datetime, date_list: np.ndarray) -> datetime:
return date_list[(date_list - date).argmin()]
if __name__ == '__main__':
event_date = datetime.now()
return_dates = np.array([datetime(2020, 1, _) for _ in range(1, 32)])
print(get_next_trade_date(event_date, return_dates))
# 2020-01-01 00:00:00

Related

pandas datareader. Save all data to one dataframe

I am new to Python and I have trouble getting data into one dataframe.
I have the following code.
from pandas_datareader import data as pdr
from datetime import date
from datetime import timedelta
import yfinance as yf
yf.pdr_override()
import pandas as pd
# tickers list
ticker_list = ['0P0001A532.CO','0P00018Q4V.CO','0P00017UBI.CO','0P00000YYT.CO','PFIBAA.CO','PFIBAB.CO','PFIBAC.CO','PFIDKA.CO','PFIGLA.CO','PFIMLO.CO','PFIKRB.CO','0P00019SMI.F','WEKAFKI.CO','0P0001CICW.CO','WEISTA.CO','WEISTS.CO','WEISA.CO','WEITISOP.CO']
today = date.today()
# We can get data by our choice by days bracket
if date.today().weekday()==0:
start_date = (today + timedelta((4 + today.weekday()) % 7)) - timedelta(days=7) # Friday. If it is monday we do not have a price since it is based on the previous day close.
else:
start_date = today - timedelta(days=1)
files=[]
allData = []
dafr_All = []
def getData(ticker):
print(ticker)
data = pdr.get_data_yahoo(ticker, start= start_date, end=(today + timedelta(days=2)))['Adj Close']
dataname = ticker+'_'+str(today)
files.append(dataname)
allData.append(data)
SaveData(data, dataname)
# Create a data folder in your current dir.
def SaveData(df, filename):
df.to_csv('./data/'+filename+'.csv')
#This loop will iterate over ticker list, will pass one ticker to get data, and save that data as file.
for tik in ticker_list:
getData(tik)
for i in range(0,11):
df1= pd.read_csv('./data/'+ str(files[i])+'.csv')
print (df1.head())
I get several csv files containing the adjusted close values (if there exists an adjusted close).
I want to save all the data to a dataframe where the first column consist of tickers, while the second column consist of adjusted close values. The dataframe then needs to be exported into a csv-file.

Python how to add repeating values to list

What I am trying to figure out is how to add "Cases" and "Deaths" for each day, so that it starts with: "1/19/2020 Cases" and "1/19/2020 Deaths" then "1/20/2020 Cases" etc. It seems the append function does not work for this, and I don't know how else to add this. It doesn't seem like python has a way to do this task. My eventual goal is to make this a pandas dataframe.
import pandas as pd
dates = pd.date_range(start = '1/19/2020', end = '12/31/2021')
lst = dates.repeat(repeats = 2)
print(lst)
Thanks
If I am not mistaken, I don't think there's a way to do it with purely pandas. However with python and datetime, you can do so:
import pandas as pd
from datetime import timedelta, date
def daterange(start_date, end_date):
# Credit: https://stackoverflow.com/a/1060330/10640517
for n in range(int((end_date - start_date).days)):
yield start_date + timedelta(n)
dates = []
start_date = date(2020, 1, 19) # Start date here
end_date = date(2021, 12, 31) # End date here
for single_date in daterange(start_date, end_date):
dates.append(single_date.strftime("%m/%d/%Y") + " Cases")
dates.append(single_date.strftime("%m/%d/%Y") + " Deaths")
pdates = pd.DataFrame(dates)
print (pdates)
Is this what you want? If not, I can delete it.

How do I loop through days in months in python3?

Say for the year of 2020, how do I iterate through the days in the months so that my outcome would be in the following format:
Jan1
Jan2
Jan3
....
Jan31
Feb1
I've tried so many things online but I couldnt find an answer. Please help :(
Both of these methods will handle leap years correctly out of the box.
Using a simple while loop:
from datetime import datetime, timedelta
def iter_days(year):
dt = datetime(year, 1, 1)
while dt.year == year:
yield dt
dt += timedelta(days=1)
Using date rules:
from datetime import datetime
from dateutil.rrule import rrule, DAILY
def iter_days(year):
first_date = datetime(year, 1, 1)
last_date = datetime(year, 12, 31)
return rrule(DAILY, dtstart=first_date, until=last_date)
Both would be used the same:
for dt in iter_days(2020):
print(dt.strftime('%b%-d'))
The format string '%b%-d' will give you the format you specified in your question. I don't know if that was a requirement or not.
This is crude but gets what you want for 2020. You'll need to change 366 to 365 for non-leap-years.
#!/usr/bin/python3
import datetime
startDate = '2020-01-01'
start = datetime.datetime.strptime(startDate, '%Y-%m-%d')
for dayNum in range(0,366):
dayOfYear = start + datetime.timedelta(days=dayNum)
print(dayOfYear.strftime('%b %d, %Y'))
The calendar module offers quite a bit of functionality.
Here is a solution that works for any given year
import calendar as cal
for mi in range(1,13):
_, days = cal.monthrange(2020, mi)
for d in range(1, days+1):
print(cal.month_name[mi], d)

How to verify if Ids are present in each day within a period of x days?

The problem is the dataset has variable data rates per ID, I would like to filter out the IDs that do not have at least one data point per day.
I have a dataframe with IDs, dates, and data, in which I counted the daily sampling rate for each ID.
dfcounted = df.reset_index().groupby(['id', pd.Grouper(key='datetime', freq='D')]).count().reset_index()
Now, i have taken the first and last date of the dataframe, and created a dataframe of each day between the starting and ending dates:
# take dates
sdate = df['datetime'].min() # start date
edate = df['datetime'].max() # end date
# interval
delta = edate - sdate # as timedelta
# empty list
dates = []
# store each date in list
for i in range(delta.days + 1):
day = sdate + timedelta(days=i)
dates.append(day)
# convert to dataframe
dates = pd.DataFrame(data = dates, columns=["date"])
From here, I am lost on how to proceed. I have created a sample dataframe
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import random
import string
letters = string.ascii_lowercase
ids = random.choices(letters,k=100)
date_today = datetime.now()
days = pd.date_range(date_today, date_today + timedelta(99), freq='D')
np.random.seed(seed=1111)
data = np.random.randint(1, high=100, size=len(days))
df = pd.DataFrame({'date': days,'ids': ids, 'data': data})
df = df.set_index('date')
With the sample df, i would expect to create a "results" df with only the ids that have data in each date.

python3 iterating through dates

I have a list of date objects X ("%Y,%m,%d") and a date Y and want to have a list Z with all dates in it that are +-10days away from date Y IGNORING the year.
Ex.:
timeDelta = 10days
X = [2017-10-10, 2014-09-31, 1999-05-10, 1992-10-18]
Y = 2019-10-05
Z = MyFunction(X, Y, delta)
MyFunction(X,Y, timeDelta):
for i in range((currentDate-500000),currentDate,10000): # last 50 years in 1 year steps
bottomBoundries.append(datetime.strptime(str(i),'%Y%m%d')-timedelta(timeDelta))
topBoundries.append(datetime.strptime(str(i),'%Y%m%d')+timedelta(timeDelta))
for i in range(0, pandas.shape[0], 1):
for j in range(0, len(bottomBoundries) , 1):
if ((pandas["MESS_DATUM"].iloc[i] > bottomBoundries[j]) & (pandas["MESS_DATUM"].iloc[i] < topBoundries[j])):
indices.append(i)
result = pandas.iloc[indices]
return result
This takes a lot of time and I was wondering how to make it more efficient.
you could use the timetuple().yday to get the day in the year
so something like this might work:
def diff_without_year(date, reference_date, timedelta):
ref_yday = reference_date.timetuple().yday
diff = d.timetuple().yday - ref_yday # + optionally code to take care of the difference in hours, minutes,...
return abs(diff) <= timedelta
here timedelta is in days. If you get it in a TimeDelta object, you can convert by dividing by pd.TimeDelta('1day')
df['result'] = df["MESS_DATUM"].apply(lambda x: diff_without_year(x, ref_date, timedelta))
If you have your dates in a pandas series, you can simplify this up by using Series.dt.dayofyear
df['result'] = (df["MESS_DATUM"].dt.dayofyear - reference_date.timetuple().yday) < timedelta
A more adhoc solution that checks for each date in X whether the date in the year of Y is within 10 days, as well as the date in the preceding and succeeding year. This runs in linear time in size of X. For a large list of X, you can adapt this to do it in a pandas dataframe, and parallelize this code.
import datetime
timeDelta = 10 # in days
X = ['2017-10-10', '2014-09-30', '1999-05-10', '1992-10-18']
Y = '2019-10-05'
Y_date = datetime.datetime.strptime(Y, '%Y-%m-%d') # convert to datetime
td = datetime.timedelta(timeDelta)
year = Y_date.year
output_dates = []
for date in X:
X_date = datetime.datetime.strptime(date, '%Y-%m-%d')
month = X_date.month
day = X_date.day
date_previous_year = datetime.datetime(year=year-1, month=month, day=day)
date_current_year = datetime.datetime(year=year, month=month, day=day)
date_next_year = datetime.datetime(year=year+1, month=month, day=day)
if abs(date_previous_year - Y_date) <= td or \
abs(date_current_year - Y_date) <= td or \
abs(date_next_year - Y_date) <= td:
output_dates.append(date)
print(output_dates)

Resources