This is regarding a project using pandas in Python 3.7
I have a reference Dataframe df1
code name
0 1 A
2 2 B
3 3 C
4 4 D
And I have another bigger data frame df2 with missing values
code name
0 3 C
1 2
2 1 A
3 4
4 3
5 1 B
6 4
7 2
8 3 C
9 2
As you see here df2 has missing values.
How can I fill these values from the reference dataframe df1 using
I used the following:
'''
df2 = df2.merge(df1,on='code',how='left')
'''
Related
I have two dataframes and one is a subset of another one (picture below). I am not sure whether pandas can compare two dataframes and filter the data which is not in the subset and export it as a dataframe. Or is there any package doing this kind of task?
The subset dataframe was generated from RandomUnderSampler but the RandomUnderSampler did not have function which exports the unselected data. Any comments are welcome.
Use drop_duplicates with keep=False parameter:
Example:
>>> df1
A B
0 0 1
1 2 3
2 4 5
3 6 7
4 8 9
>>> df2
A B
0 0 1
1 2 3
2 6 7
>>> pd.concat([df1, df2]).drop_duplicates(keep=False)
A B
2 4 5
4 8 9
I have a dataframe as follow:
import pandas as pd
d = {'location1': [1, 2,3,8,6], 'location2':
[2,1,4,6,8]}
df = pd.DataFrame(data=d)
The dataframe df means there is a road between two locations. look like:
location1 location2
0 1 2
1 2 1
2 3 4
3 8 6
4 6 8
The first row means there is a road between locationID1 and locationID2, however, the second row also encodes this information. The forth and fifth rows also have repeated information. I am trying the remove those repeated by keeping only one row. Any of row is okay.
For example, my expected output is
location1 location2
0 1 2
2 3 4
4 6 8
Any efficient way to do that because I have a large dataframe with lots of repeated rows.
Thanks a lot,
It looks like you want every other row in your dataframe. This should work.
import pandas as pd
d = {'location1': [1, 2,3,8,6], 'location2':
[2,1,4,6,8]}
df = pd.DataFrame(data=d)
print(df)
location1 location2
0 1 2
1 2 1
2 3 4
3 8 6
4 6 8
def Every_other_row(a):
return a[::2]
Every_other_row(df)
location1 location2
0 1 2
2 3 4
4 6 8
I have two dataframes. The first one (df1) has a Multi-Index A,B.
The second one (df2) has those fields A and B as columns.
How do I filter df2 for a large dataset (2 million rows in each) to get only the rows in df2 where A and B are not in the multi index of df1
import pandas as pd
df1 = pd.DataFrame([(1,2,3),(1,2,4),(1,2,4),(2,3,4),(2,3,1)],
columns=('A','B','C')).set_index(['A','B'])
df2 = pd.DataFrame([(7,7,1,2,3),(7,7,1,2,4),(6,6,1,2,4),
(5,5,6,3,4),(2,7,2,2,1)],
columns=('X','Y','A','B','C'))
df1:
C
A B
1 2 3
2 4
2 4
2 3 4
3 1
df2 before filtering:
X Y A B C
0 7 7 1 2 3
1 7 7 1 2 4
2 6 6 1 2 4
3 5 5 6 3 4
4 2 7 2 2 1
df2 wanted result:
X Y A B C
3 5 5 6 3 4
4 2 7 2 2 1
Create MultiIndex in df2 by A,B columns and filter by Index.isin with ~ for invert boolean mask with boolean indexing:
df = df2[~df2.set_index(['A','B']).index.isin(df1.index)]
print (df)
X Y A B C
3 5 5 6 3 4
4 2 7 2 2 1
Another similar solution with MultiIndex.from_arrays:
df = df2[~pd.MultiIndex.from_arrays([df2['A'],df2['B']]).isin(df1.index)]
Another solution by #Sandeep Kadapa:
df = df2[df2[['A','B']].ne(df1.reset_index()[['A','B']]).any(axis=1)]
This question already has answers here:
Add a sequential counter column on groups to a pandas dataframe
(4 answers)
Closed 1 year ago.
Okay this is tricky. I have a pandas dataframe and I am dealing with machine log data. I have an index in the data, but this dataframe has various jobs in it. I wanted to be able to give those individual jobs an index of their own, so that i could compare them with each other. So I want another column with an index beginning with zero, which goes till the end of the job and then resets to zero for the new job. Or do i do this line by line?
I think you need set_index with cumcount for count categories:
df = df.set_index(df.groupby('Job Columns').cumcount(), append=True)
Sample:
np.random.seed(456)
df = pd.DataFrame({'Jobs':np.random.choice(['a','b','c'], size=10)})
#solution with sorting
df1 = df.sort_values('Jobs').reset_index(drop=True)
df1 = df1.set_index(df1.groupby('Jobs').cumcount(), append=True)
print (df1)
Jobs
0 0 a
1 1 a
2 2 a
3 0 b
4 1 b
5 2 b
6 3 b
7 0 c
8 1 c
9 2 c
#solution with no sorting
df2 = df.set_index(df.groupby('Jobs').cumcount(), append=True)
print (df2)
Jobs
0 0 b
1 1 b
2 0 c
3 0 a
4 1 c
5 2 c
6 1 a
7 2 b
8 2 a
9 3 b
Given the following data frame:
import pandas as pd
df=pd.DataFrame({'A':['A','A','A','B','B','B'],
'B':[1,1,2,1,1,1],
'C':[2,4,6,3,5,7]})
df
A B C
0 A 1 2
1 A 1 4
2 A 2 6
3 B 1 3
4 B 1 5
5 B 1 7
Wherever there are duplicate rows per columns 'A' and 'B', I'd like to combine those rows and sum the value under column 'C' like this:
A B C
0 A 1 6
2 A 2 6
3 B 1 15
So far, I can at least identify the duplicates like this:
df['Dup']=df.duplicated(['A','B'],keep=False)
Thanks in advance!
use groupby() and sum():
In [94]: df.groupby(['A','B']).sum().reset_index()
Out[94]:
A B C
0 A 1 6
1 A 2 6
2 B 1 15