I am using the following code to print the missing value count and the column names.
#Looking for missing data and then handling it accordingly
def find_missing(data):
# number of missing values
count_missing = data_final.isnull().sum().values
# total records
total = data_final.shape[0]
# percentage of missing
ratio_missing = count_missing/total
# return a dataframe to show: feature name, # of missing and % of missing
return pd.DataFrame(data={'missing_count':count_missing, 'missing_ratio':ratio_missing},
index=data.columns.values)
find_missing(data_final).head(5)
What I want to do is to only print those columns where there is a missing value as I have a huge data set of about 150 columns.
The data set looks like this
A B C D
123 ABC X Y
123 ABC X Y
NaN ABC NaN NaN
123 ABC NaN NaN
245 ABC NaN NaN
345 ABC NaN NaN
In the output I would just want to see :
missing_count missing_ratio
C 4 0.66
D 4 0.66
and not the columns A and B as there are no missing values there
Use DataFrame.isna with DataFrame.sum
to count by columns. We can also use DataFrame.isnull instead DataFrame.isna.
new_df = (df.isna()
.sum()
.to_frame('missing_count')
.assign(missing_ratio = lambda x: x['missing_count']/len(df))
.loc[df.isna().any()] )
print(new_df)
We can also use pd.concat instead DataFrame.assign
count = df.isna().sum()
new_df = (pd.concat([count.rename('missing_count'),
count.div(len(df))
.rename('missing_ratio')],axis = 1)
.loc[count.ne(0)])
Output
missing_count missing_ratio
A 1 0.166667
C 4 0.666667
D 4 0.666667
IIUC, we can assign the missing and total count to two variables do some basic math and assign back to a df.
a = df.isnull().sum(axis=0)
b = np.round(df.isnull().sum(axis=0) / df.fillna(0).count(axis=0),2)
missing_df = pd.DataFrame({'missing_vals' : a,
'missing_ratio' : b})
print(missing_df)
missing_vals ratio
A 1 0.17
B 0 0.00
C 4 0.67
D 4 0.67
you can filter out columns that don't have any missing vals
missing_df = missing_df[missing_df.missing_vals.ne(0)]
print(missing_df)
missing_vals ratio
A 1 0.17
C 4 0.67
D 4 0.67
You can also use concat:
s = df.isnull().sum()
result = pd.concat([s,s/len(df)],1)
result.columns = ["missing_count","missing_ratio"]
print (result)
missing_count missing_ratio
A 1 0.166667
B 0 0.000000
C 4 0.666667
D 4 0.666667
Related
I have a dataframe as
col 1 col 2
A 2020-07-13
A 2020-07-15
A 2020-07-18
A 2020-07-19
B 2020-07-13
B 2020-07-19
C 2020-07-13
C 2020-07-18
I want it to become the following in a new dataframe
col_3 diff_btw_1st_2nd_date diff_btw_2nd_3rd_date diff_btw_3rd_4th_date
A 2 3 1
B 6 NaN NaN
C 5 NaN NaN
I tried getting the groupby at Col 1 level , but not getting the intended result. Can anyone help?
Use GroupBy.cumcount for counter pre column col 1 and reshape by DataFrame.set_index with Series.unstack, then use DataFrame.diff, remove first only NaNs columns by DataFrame.iloc, convert timedeltas to days by Series.dt.days per all columns and change columns names by DataFrame.add_prefix:
df['col 2'] = pd.to_datetime(df['col 2'])
df = (df.set_index(['col 1',df.groupby('col 1').cumcount()])['col 2']
.unstack()
.diff(axis=1)
.iloc[:, 1:]
.apply(lambda x: x.dt.days)
.add_prefix('diff_')
.reset_index())
print (df)
col 1 diff_1 diff_2 diff_3
0 A 2 3.0 1.0
1 B 6 NaN NaN
2 C 5 NaN NaN
Or use DataFrameGroupBy.diff with counter for new columns by DataFrame.assign, reshape by DataFrame.pivot and remove NaNs by c2 with DataFrame.dropna:
df['col 2'] = pd.to_datetime(df['col 2'])
df = (df.assign(g = df.groupby('col 1').cumcount(),
c1 = df.groupby('col 1')['col 2'].diff().dt.days)
.dropna(subset=['c1'])
.pivot('col 1','g','c1')
.add_prefix('diff_')
.rename_axis(None, axis=1)
.reset_index())
print (df)
col 1 diff_1 diff_2 diff_3
0 A 2.0 3.0 1.0
1 B 6.0 NaN NaN
2 C 5.0 NaN NaN
You can assign a cumcount number grouped by col 1, and pivot the table using that cumcount number.
Solution
df["col 2"] = pd.to_datetime(df["col 2"])
# 1. compute date difference in days using diff() and dt accessor
df["diff"] = df.groupby(["col 1"])["col 2"].diff().dt.days
# 2. assign cumcount for pivoting
df["cumcount"] = df.groupby("col 1").cumcount()
# 3. partial transpose, discarding the first difference in nan
df2 = df[["col 1", "diff", "cumcount"]]\
.pivot(index="col 1", columns="cumcount")\
.drop(columns=[("diff", 0)])
Result
# replace column names for readability
df2.columns = [f"d{i+2}-d{i+1}" for i in range(len(df2.columns))]
print(df2)
d2-d1 d3-d2 d4-d3
col 1
A 2.0 3.0 1.0
B 6.0 NaN NaN
C 5.0 NaN NaN
df after assing cumcount is like this
print(df)
col 1 col 2 diff cumcount
0 A 2020-07-13 NaN 0
1 A 2020-07-15 2.0 1
2 A 2020-07-18 3.0 2
3 A 2020-07-19 1.0 3
4 B 2020-07-13 NaN 0
5 B 2020-07-19 6.0 1
6 C 2020-07-13 NaN 0
7 C 2020-07-18 5.0 1
I have a long form dataframe that contains multiple samples and time points for each subject. The number of samples and timepoint can vary, and the days between time points can also vary:
test_df = pd.DataFrame({"subject_id":[1,1,1,2,2,3],
"sample":["A", "B", "C", "D", "E", "F"],
"timepoint":[19,11,8,6,2,12],
"time_order":[3,2,1,2,1,1]
})
subject_id sample timepoint time_order
0 1 A 19 3
1 1 B 11 2
2 1 C 8 1
3 2 D 6 2
4 2 E 2 1
5 3 F 12 1
I need to figure out a way to generalize grouping this dataframe by subject_id and putting all samples and time points on the same row, in time order.
DESIRED OUTPUT:
subject_id sample1 timepoint1 sample2 timepoint2 sample3 timepoint3
0 1 C 8 B 11 A 19
1 2 E 2 D 6 null null
5 3 F 12 null null null null
Pivot gets me close, but I'm stuck on how to proceed from there:
test_df = test_df.pivot(index=['subject_id', 'sample'],
columns='time_order', values='timepoint')
Use DataFrame.set_index with DataFrame.unstack for pivoting, sorting MultiIndex in columns, flatten it and last convert subject_id to column:
df = (test_df.set_index(['subject_id', 'time_order'])
.unstack()
.sort_index(level=[1,0], axis=1))
df.columns = df.columns.map(lambda x: f'{x[0]}{x[1]}')
df = df.reset_index()
print (df)
subject_id sample1 timepoint1 sample2 timepoint2 sample3 timepoint3
0 1 C 8.0 B 11.0 A 19.0
1 2 E 2.0 D 6.0 NaN NaN
2 3 F 12.0 NaN NaN NaN NaN
a=test_df.iloc[:,:3].groupby('subject_id').last().add_suffix('1')
b=test_df.iloc[:,:3].groupby('subject_id').nth(-2).add_suffix('2')
c=test_df.iloc[:,:3].groupby('subject_id').nth(-3).add_suffix('3')
pd.concat([a, b,c], axis=1)
sample1 timepoint1 sample2 timepoint2 sample3 timepoint3
subject_id
1 C 8 B 11.0 A 19.0
2 E 2 D 6.0 NaN NaN
3 F 12 NaN NaN NaN NaN
Cant be this hard. I Have
df=pd.DataFrame({'id':[1,2,3],'name':['j','l','m'], 'mnt':['f','p','p'],'nt':['b','w','e'],'cost':[20,30,80],'paid':[12,23,45]})
I need
import numpy as np
df1=pd.DataFrame({'id':[1,2,3,1,2,3],'name':['j','l','m','j','l','m'], 't':['f','p','p','b','w','e'],'paid':[12,23,45,np.nan,np.nan,np.nan],'cost':[20,30,80,np.nan,np.nan,np.nan]})
I have 45 columns to invert.
I tried
(df.set_index(['id', 'name'])
.rename_axis(['paid'], axis=1)
.stack().reset_index())
EDIT: I think simpliest here is set missing values by variable column in DataFrame.melt:
df2 = df.melt(['id', 'name','cost','paid'], value_name='t')
df2.loc[df2.pop('variable').eq('nt'), ['cost','paid']] = np.nan
print (df2)
id name cost paid t
0 1 j 20.0 12.0 f
1 2 l 30.0 23.0 p
2 3 m 80.0 45.0 p
3 1 j NaN NaN b
4 2 l NaN NaN w
5 3 m NaN NaN e
Use lreshape working with dictionary of lists for specified which columns are 'grouped' together:
df2 = pd.lreshape(df, {'t':['mnt','nt'], 'mon':['cost','paid']})
print (df2)
id name t mon
0 1 j f 20
1 2 l p 30
2 3 m p 80
3 1 j b 12
4 2 l w 23
5 3 m e 45
I have a situation where I need to drop a lot of my dataframe columns where there are high missing values. I have created a new dataframe that gives me the missing values and the ratio of missing values from my original data set.
My original data set - data_merge2 looks like this :
A B C D
123 ABC X Y
123 ABC X Y
NaN ABC NaN NaN
123 ABC NaN NaN
245 ABC NaN NaN
345 ABC NaN NaN
The count data set looks like this that gives me the missing count and ratio:
missing_count missing_ratio
C 4 0.10
D 4 0.66
The code that I used to create the count dataset looks like :
#Only check those columns where there are missing values as we have got a lot of columns
new_df = (data_merge2.isna()
.sum()
.to_frame('missing_count')
.assign(missing_ratio = lambda x: x['missing_count']/len(data_merge2)*100)
.loc[data_merge2.isna().any()] )
print(new_df)
Now I want to drop the columns from the original dataframe whose missing ratio is >50%
How should I achieve this?
Use:
data_merge2.loc[:,data_merge2.count().div(len(data_merge2)).ge(0.5)]
#Alternative
#df[df.columns[df.count().mul(2).gt(len(df))]]
or DataFrame.drop using new_df DataFrame
data_merge2.drop(columns = new_df.index[new_df['missing_ratio'].gt(50)])
Output
A B
0 123.0 ABC
1 123.0 ABC
2 NaN ABC
3 123.0 ABC
4 245.0 ABC
5 345.0 ABC
Adding another way with query and XOR:
data_merge2[data_merge2.columns ^ new_df.query('missing_ratio>50').index]
Or pandas way using Index.difference
data_merge2[data_merge2.columns.difference(new_df.query('missing_ratio>50').index)]
A B
0 123.0 ABC
1 123.0 ABC
2 NaN ABC
3 123.0 ABC
4 245.0 ABC
5 345.0 ABC
I have a dataframe that contains nan values in particular column. while iterating through the rows, if it come across nan(using isnan() method) then I need to change it to some other value(since I have some conditions). I tried using replace() and fillna() with limit parameter also but they are modifying whole column when they come across the first nan value? Is there any method that I can assign value to specific nan rather than changing all the values of a column?
Example: the dataframe looks like it:
points sundar cate king varun vicky john charlie target_class
1 x2 5 'cat' 4 10 3 2 1 NaN
2 x3 3 'cat' 1 2 3 1 1 NaN
3 x4 6 'lion' 8 4 3 7 1 NaN
4 x5 4 'lion' 1 1 3 1 1 NaN
5 x6 8 'cat' 10 10 9 7 1 0.0
an I have a list like
a = [1.0, 0.0]
and I expect to be like
points sundar cate king varun vicky john charlie target_class
1 x2 5 'cat' 4 10 3 2 1 1.0
2 x3 3 'cat' 1 2 3 1 1 1.0
3 x4 6 'lion' 8 4 3 7 1 1.0
4 x5 4 'lion' 1 1 3 1 1 0.0
5 x6 8 'cat' 10 10 9 7 1 0.0
I wanted to change the target_class values based on some conditions and assign values of the above list.
I believe need replace NaNs values to 1 only for indexes specified in list idx:
mask = df['target_class'].isnull()
idx = [1,2,3]
df.loc[mask, 'target_class'] = df[mask].index.isin(idx).astype(int)
print (df)
points sundar cate king varun vicky john charlie target_class
1 x2 5 'cat' 4 10 3 2 1 1.0
2 x3 3 'cat' 1 2 3 1 1 1.0
3 x4 6 'lion' 8 4 3 7 1 1.0
4 x5 4 'lion' 1 1 3 1 1 0.0
5 x6 8 'cat' 10 10 9 7 1 0.0
Or:
idx = [1,2,3]
s = pd.Series(df.index.isin(idx).astype(int), index=df.index)
df['target_class'] = df['target_class'].fillna(s)
EDIT:
From comments solution is assign values by index and columns values with DataFrame.loc:
df2.loc['x2', 'target_class'] = list1[0]
I suppose your conditions for imputing the nan values does not depend on the number of them in a column. In the code below I stored all the imputation rules in one function that receives as parameters the entire row (containing the nan) and the column you are investigating for. If you also need all the dataframe for the imputation rules, just pass it through the replace_nan function. In the example I imputate the col element with the mean values of the other columns.
import pandas as pd
import numpy as np
def replace_nan(row, col):
row[col] = row.drop(col).mean()
return row
df = pd.DataFrame(np.random.rand(5,3), columns = ['col1', 'col2', 'col3'])
col_to_impute = 'col1'
df.loc[[1, 3], col_to_impute] = np.nan
df = df.apply(lambda x: replace_nan(x, col_to_impute) if np.isnan(x[col_to_impute]) else x, axis=1)
The only thing that you should do is making the right assignation. That is, make an assignation in the rows that contain nulls.
Example dataset:
,event_id,type,timestamp,label
0,asd12e,click,12322232,0.0
1,asj123,click,212312312,0.0
2,asd321,touch,12312323,0.0
3,asdas3,click,33332233,
4,sdsaa3,touch,33211333,
Note: The last two rows contains nulls in column: 'label'. Then, we load the dataset:
df = pd.read_csv('dataset.csv')
Now, we make the appropiate condition:
cond = df['label'].isnull()
Now, we make the assignation over these rows (I don't know the logical of assignation. Therefore I assign 1 value to NaN's):
df1.loc[cond,'label'] = 1
There are another more accurate approaches. fillna() method could be used. You should provide the logical in order to help you.