We have some code that we run on Amazon's servers that loads parquet using the s3:// scheme as advised by Amazon. However, some developers want to run code locally using a spark installation on Windows, but stubbornly spark insists on using the s3a:// scheme.
We can read files just fine using s3a, but we get an java.lang.NoClassDefFoundError: org/jets3t/service/S3ServiceException.
SparkSession available as 'spark'.
>>> spark.read.parquet('s3a://bucket/key')
DataFrame[********************************************]
>>> spark.read.parquet('s3://bucket/key')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\spark\spark-2.4.4-bin-hadoop2.7\python\pyspark\sql\readwriter.py", line 316, in parquet
return self._df(self._jreader.parquet(_to_seq(self._spark._sc, paths)))
File "C:\spark\spark-2.4.4-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py", line 1257, in __call__
File "C:\spark\spark-2.4.4-bin-hadoop2.7\python\pyspark\sql\utils.py", line 63, in deco
return f(*a, **kw)
File "C:\spark\spark-2.4.4-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o37.parquet.
: java.lang.NoClassDefFoundError: org/jets3t/service/S3ServiceException
at org.apache.hadoop.fs.s3.S3FileSystem.createDefaultStore(S3FileSystem.java:99)
at org.apache.hadoop.fs.s3.S3FileSystem.initialize(S3FileSystem.java:89)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2669)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.spark.sql.execution.streaming.FileStreamSink$.hasMetadata(FileStreamSink.scala:45)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:332)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.parquet(DataFrameReader.scala:644)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
Caused by: java.lang.ClassNotFoundException: org.jets3t.service.S3ServiceException
at java.net.URLClassLoader.findClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
... 24 more
Is there a way to get hadoop or spark or pyspark to "translate" the URI scheme from s3 to s3a via some sort of magic configuration? Changing the code is not an option we entertain as it would involve quite a lot of testing.
The local environment is windows 10, pyspark2.4.4 with hadoop2.7 (prebuilt), python3.7.5, and the right aws libs installed.
EDIT: One hack I used - since we're not supposed to use s3:// paths is to just convert them to s3a:// in pyspark.
I've added the following function in readwriter.py and just invoked it wherever there was a call out to the jvm with paths. Works fine, but would be nice if this was a config option.
def massage_paths(paths):
if isinstance(paths, basestring):
return 's3a' + x[2:] if x.startswith('s3:') else x
if isinstance(paths, list):
t = list
else:
t = tuple
return t(['s3a' + x[2:] if x.startswith('s3:') else x for x in paths])
cricket007 is correct.
spark.hadoop.fs.s3.impl org.apache.fs.s3a.S3AFileSystem
There's some code in org.apache.hadoop.FileSystem which looks up from a schema "s3" to an implementation class, loads it and instantiates it with the full URL.
Warning There's no specific code in the core S3A FS which looks for an FS schema being s3a, but you will encounter problems if you use the DynamoDB consistency layer "S3Guard" -that's probably a bit of overkill someone could fix
Ideally, you could refactor the code to detect the runtime environment, or externalize the paths to a config file that could be used in the respective areas.
Otherwise, you would need to edit the hdfs-site.xml to configure the fs.s3a.impl key to rename s3a to s3, and you might be able to keep the value the same. That change would need done for all Spark workers
You probably won't be able to configure Spark to help you "translate".
Instead, this is more like a design issue. The code should be made configurable to choose different protocol for different environment(that was what I did for a similar situation). If you insist on working locally, some code refactoring may not be avoidable...
Related
I'm using Azure Databricks and I want to do a text sentiment analysis with the following code:
from pyspark.sql.functions import col
import synapse.ml
from synapse.ml.cognitive import *
# Create a dataframe that's tied to it's column names
df_sentences = spark.createDataFrame([
("I am so happy today, its sunny!", "en-US"),
("this is a dog", "en-US"),s
("I am frustrated by this rush hour traffic!", "en-US")
], ["text", "language"])
# Run the Text Analytics service with options
sentiment = (TextSentiment()
.setTextCol("text")
.setLocation("eastasia") # Set the location of your cognitive service
.setSubscriptionKey(cognitive_service_key)
.setOutputCol("sentiment")
.setErrorCol("error")
.setLanguageCol("language"))
# Show the results of your text query in a table format
display(sentiment.transform(df_sentences).select("text", col("sentiment")[0].getItem("sentiment").alias("sentiment")))
This doesn't work.. Here is the full error with the details:
java.lang.NoClassDefFoundError: Could not initialize class com.microsoft.azure.synapse.ml.param.ServiceParamJsonProtocol$
Py4JJavaError: An error occurred while calling None.com.microsoft.azure.synapse.ml.cognitive.TextSentiment.
: java.lang.NoClassDefFoundError: Could not initialize class com.microsoft.azure.synapse.ml.param.ServiceParamJsonProtocol$
at com.microsoft.azure.synapse.ml.param.ServiceParam.<init>(JsonEncodableParam.scala:62)
at com.microsoft.azure.synapse.ml.cognitive.HasSubscriptionKey.$init$(CognitiveServiceBase.scala:130)
at com.microsoft.azure.synapse.ml.cognitive.CognitiveServicesBaseNoHandler.<init>(CognitiveServiceBase.scala:306)
at com.microsoft.azure.synapse.ml.cognitive.TextAnalyticsBase.<init>(TextAnalytics.scala:53)
at com.microsoft.azure.synapse.ml.cognitive.TextSentiment.<init>(TextAnalytics.scala:288)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
at py4j.Gateway.invoke(Gateway.java:250)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:251)
at java.lang.Thread.run(Thread.java:748)
I'm running 10.4 (includes Apache Spark 3.2.1, Scala 2.12) cluster and have synapseml_2.12:0.10.0 installed. Does someone know what goes wrong?
Generally this error is caused by incompatible versions of libraries with spark and Scala.
To get rid of this error you need to Uninstall synapseml_2.12:0.10.0 and install synapseml_2.12:0.10.1
Maven coordinates - com.microsoft.azure:synapseml_2.12:0.10.1
I'm trying to play around with different Spark output committer settings for s3, and wanted to try out the magic committer. So far I didn't manage to get my jobs to use the magic committer, and they always seem to fall back on the file output committer.
The Spark job I'm running is a simple PySpark test job that runs a simple query, repartitions the data and outputs parquet to s3:
df = spark.sql("select * from some_table where some_condition")
df.write \
.partitionBy("some_column") \
.parquet("s3://some-bucket/some-folder", mode="overwrite")
The relevant spark settings are (taken from the Spark UI, job's environment tab):
spark.hadoop.mapreduce.outputcommitter.factory.scheme.s3a org.apache.hadoop.fs.s3a.commit.S3ACommitterFactory
spark.hadoop.fs.s3a.committer.magic.enabled true
spark.hadoop.fs.s3a.committer.name magic
spark.hadoop.fs.s3a.committer.staging.tmp.path tmp/staging
spark.hadoop.fs.s3a.committer.staging.unique-filenames true
spark.sql.parquet.output.committer.class org.apache.spark.internal.io.cloud.BindingParquetOutputCommitter
spark.sql.sources.commitProtocolClass org.apache.spark.internal.io.cloud.PathOutputCommitProtocol
mapreduce.output.fileoutputformat.compress false
mapreduce.output.fileoutputformat.compress.codec org.apache.hadoop.io.compress.DefaultCodec
mapreduce.output.fileoutputformat.compress.type RECORD
mapreduce.outputcommitter.factory.scheme.s3a org.apache.hadoop.fs.s3a.commit.S3ACommitterFactory
mapreduce.fileoutputcommitter.algorithm.version 1
mapreduce.fileoutputcommitter.task.cleanup.enabled false
mapreduce.outputcommitter.factory.scheme.s3a org.apache.hadoop.fs.s3a.commit.S3ACommitterFactory
Hadoop properties:
fs.s3a.committer.magic.enabled true
fs.s3a.committer.name magic
(Let me know if any other settings are relevant)
I'm basing the observation of file committer being used instead of magic committer on a couple of things:
Different log lines produced by the spark job seem to indicate the file output committer being used:
"class":"org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter","file_line":"FileOutputCommitter.java:601","func":"commitTask","message":"Saved output of task 'attempt_2021...' to s3://some-bucket/some-folder/_temporary/0/
task_2021..."
"class":"org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat","file_line":"ParquetFileFormat.scala:54","message":"U
sing user defined output committer for Parquet: org.apache.spark.internal.io.cloud.BindingParquetOutputCommitter"
"class":"org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter","file_line":"FileOutputCommitter.java:141","func":"<init>","message":"File Outpu
t Committer Algorithm version is 1"
"class":"org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter","file_line":"FileOutputCommitter.java:156","func":"<init>","message":"FileOutput
Committer skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false"
When setting the file committer's algo to an invalid number, like so:
spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version -7
an exception is raised from the file committer's constructor saying the value is invalid - implicating that the file committer was initialized instead of the magic committer.
I'm not seeing any logs indicating usage of the magic committer, or any failure to initialize a committer which could explain falling back on the file committer.
Spark version is 3.1.2 using this spark-hadoop-cloud JAR. Let me know if there's any other officially published JAR I can try or if there are any other log indications that may be relevant.
Any thoughts?
===== EDIT:
Below is the stack trace I see when setting the file committer algo to an invalid value. It seems that the call to org.apache.spark.internal.io.cloud.PathOutputCommitProtocol.setupCommitter ends up calling org.apache.hadoop.mapreduce.lib.output.FileOutputCommitterFactory.createOutputCommitter which in turn initializes the incorrect type org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter instead of the configured type org.apache.spark.internal.io.cloud.BindingParquetOutputCommitter
Py4JJavaError: An error occurred while calling o259.parquet.
: java.io.IOException: Only 1 or 2 algorithm version is supported
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.<init>(FileOutputCommitter.java:143)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.<init>(FileOutputCommitter.java:117)
at org.apache.hadoop.mapreduce.lib.output.PathOutputCommitterFactory.createFileOutputCommitter(PathOutputCommitterFactory.java:134)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitterFactory.createOutputCommitter(FileOutputCommitterFactory.java:35)
at org.apache.hadoop.mapreduce.lib.output.PathOutputCommitterFactory.createCommitter(PathOutputCommitterFactory.java:201)
at org.apache.spark.internal.io.cloud.PathOutputCommitProtocol.setupCommitter(PathOutputCommitProtocol.scala:88)
at org.apache.spark.internal.io.cloud.PathOutputCommitProtocol.setupCommitter(PathOutputCommitProtocol.scala:49)
at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.setupJob(HadoopMapReduceCommitProtocol.scala:177)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:173)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:188)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:108)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:106)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:131)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:132)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:131)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand$1(DataFrameWriter.scala:989)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:989)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:438)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:415)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:293)
at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:874)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Mystery solved - the failure to initialize the magic committer was due to a mismatch between the committer factory scheme setting to the scheme of the actual destination URL. Consider this:
The committer factory configuration was set using the key: spark.hadoop.mapreduce.outputcommitter.factory.scheme.s3a - meaning that the setting is made for s3a protocol URLs.
While th URL sent to the write method was: s3://some-bucket/some-folder - using s3 protocol instead of s3a.
The PathOutputCommitterFactory hadoop class searches for a config key with pattern mapreduce.outputcommitter.factory.scheme.%s to recognize which factory to use for the given output URL. In case the pattern set in the config key (in this case s3a) does not match the pattern in the destination URL (in this case s3) - the committer factory setting will not be recognized and the factory type will fall back on FileOutputCommitter.
Solution - make sure the outputcommitter.factory.scheme.<protocol> setting matches the protocol in the destination URL. I've successfully tested using both s3 and s3a in the URL & config key.
this does sound like a binding problem but I cannot see immediately where it is. At a glance you have all the right settings.
The easiest way to check that an S3 a committee is being used is to look at the _SUCCESS file . If it is a piece of JSON then a new committer was used… The text inside will then tell you more about the committer.
a 0 byte file means that the classic file output committer was still used
I'm creating a data pipeline in Azure Synapse.
Basic flow:
grab some CSV files of 837 EDI data. Put those data files on Azure Data Lake (Gen2). Foreach file put data into tabular database table format in Spark DB, named claims. See my flow
my flow
My issue: long runtimes. It seems like each file has to create a new Spark session and the overhead is too much (3 min each). I want to "declare" a session via appName and use that throughout. I have 3 test files with 10 rows in one, 2 rows in another, 10 rows in a third. Total time for 22 rows 12 minutes.
In my flow you can see the Foreach loops each have 2 activities (one is a notebook, the other a sproc) based on whether the it's an 837i or 837p.
My notebook code:
'''python
import re
from pyspark.sql.functions import desc, row_number, monotonically_increasing_id
from pyspark.sql.window import Window
from pyspark.sql import SparkSession
# create Spark session with necessary configuration
spark = (SparkSession
.builder
.appName("837App")
.config("spark.network.timeout", "600s")
.config("spark.executor.heartbeatInterval", "10s")
.getOrCreate());
# prepping the variables for the source FileName
srcPath = "abfss://folder#server.dfs.core.windows.net";
srcFQFN = f"{srcPath}/{srcFilesDirectory}/{srcFileName}";
dstTableName = "raw_837i";
# read Flat file into a data frame
df = spark.read.load(f"{srcFQFN}",
format = 'csv',
delimiter = f"{srcFileDelimeter}",
header = True
);
# add autoid
adf = df.withColumn('AutoID', row_number().over(Window.orderBy(monotonically_increasing_id())));
# clean up column names
adf = adf.toDF(*(re.sub(r"[\.\s\(\)\-]+", "_", c) for c in adf.columns));
# now the Spark database side...
# create the destination database if it did not exist
spark.sql(f"CREATE DATABASE IF NOT EXISTS {sparkDbName}");
# write that dataframe to a Spark table. update mode from overwrite to append if we just want to insert
adf.write.mode("overwrite").saveAsTable(f"{sparkDbName}.{dstTableName}");
Thanks #Sequinex and #Bendemann
What I've tried:
Added a notebook at the beginning of the pipeline to set the session; see Set 837 env in my flow. The intent is that if a session with that appName doesn't exist it will create it, then use it later. That way I spend the 3 minutes spin up time at the front of the pipeline instead of each file.
'''python
from pyspark.sql import SparkSession
# create Spark session with necessary configuration
spark = (SparkSession
.builder
.appName("837App")
.config("spark.network.timeout", "600s")
.config("spark.executor.heartbeatInterval", "10s")
.getOrCreate());
sc = spark.sparkContext;
I cannot prove that it's actually using this appName (so if someone could help with that too).
I've tried:
'''python
import pyspark
from pyspark import SparkConf
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("837App").getOrCreate()
sc
Results:
<SparkContext master=yarn appName=Synapse_sparkPrimary_1618935780>'
Shouldn't appName=837App?
I've also tried to stop the existing session and start mine
'''python
import pyspark
from pyspark import SparkConf
from pyspark.sql import SparkSession
sc.stop()
spark = SparkSession.builder.appName("837App").getOrCreate()
sc
But I get the following errors:
Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
: java.lang.IllegalStateException: Promise already completed.
at scala.concurrent.Promise$class.complete(Promise.scala:55)
at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:157)
at scala.concurrent.Promise$class.success(Promise.scala:86)
at scala.concurrent.impl.Promise$DefaultPromise.success(Promise.scala:157)
at org.apache.spark.deploy.yarn.ApplicationMaster.org$apache$spark$deploy$yarn$ApplicationMaster$$sparkContextInitialized(ApplicationMaster.scala:392)
at org.apache.spark.deploy.yarn.ApplicationMaster$.sparkContextInitialized(ApplicationMaster.scala:808)
at org.apache.spark.scheduler.cluster.YarnClusterScheduler.postStartHook(YarnClusterScheduler.scala:32)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:566)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:238)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Traceback (most recent call last):
File "/opt/spark/python/lib/pyspark.zip/pyspark/sql/session.py", line 173, in getOrCreate
sc = SparkContext.getOrCreate(sparkConf)
File "/opt/spark/python/lib/pyspark.zip/pyspark/context.py", line 367, in getOrCreate
SparkContext(conf=conf or SparkConf())
File "/opt/spark/python/lib/pyspark.zip/pyspark/context.py", line 136, in __init__
conf, jsc, profiler_cls)
File "/opt/spark/python/lib/pyspark.zip/pyspark/context.py", line 198, in _do_init
self._jsc = jsc or self._initialize_context(self._conf._jconf)
File "/opt/spark/python/lib/pyspark.zip/pyspark/context.py", line 306, in _initialize_context
return self._jvm.JavaSparkContext(jconf)
File "/opt/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1525, in __call__
answer, self._gateway_client, None, self._fqn)
File "/opt/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 69, in deco
return f(*a, **kw)
File "/opt/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
: java.lang.IllegalStateException: Promise already completed.
at scala.concurrent.Promise$class.complete(Promise.scala:55)
at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:157)
at scala.concurrent.Promise$class.success(Promise.scala:86)
at scala.concurrent.impl.Promise$DefaultPromise.success(Promise.scala:157)
at org.apache.spark.deploy.yarn.ApplicationMaster.org$apache$spark$deploy$yarn$ApplicationMaster$$sparkContextInitialized(ApplicationMaster.scala:392)
at org.apache.spark.deploy.yarn.ApplicationMaster$.sparkContextInitialized(ApplicationMaster.scala:808)
at org.apache.spark.scheduler.cluster.YarnClusterScheduler.postStartHook(YarnClusterScheduler.scala:32)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:566)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:238)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
TIA
You should look at Spark 3.2 which is in preview as at today, there are some potential performance improvements there. However I don't think you can do that type of session management with Synapse Spark, at least as far as I'm aware so you should pull all that code out and get a baseline timing.
Is this the script running inside the For Each activity? If so I would remove the CREATE DATABASE - you don't need to do that for every table right, just do it once upfront. Also make sure the storage is co-located / same region, fast, not subject to massive concurrent loads etc. Comment out all the lines from the write, to the clean columns to the row id, backwards and see if you can work out which step is taking the time.
Ultimately Spark is a big data platform so your volumes look a little low for it. Other options might be, forget about Synapse Pipeline loops and combine into one notebook - see if that's any better. I have found loops with notebooks inside don't go fast so will keep an eye out. Also consider %%configure magic although it would be trial and error.
I am trying to write a simple vanilla collaborative filtering application, running on Google Cloud Dataproc.
The Data is located in BigQuery.
I have implemented this according to this tutorial: https://cloud.google.com/dataproc/docs/tutorials/bigquery-sparkml
Now the problem is that when running this (slightly modified) example I get an IllegalStateException. More specifically here is the stacktrace:
17/09/25 10:55:37 ERROR org.apache.spark.scheduler.TaskSetManager: Task 0 in stage 0.0 failed 4 times; aborting job
Traceback (most recent call last):
File "/tmp/af84ad68-0259-4ca1-b464-a118a96f0742/marketing-pages-collaborative-filtering.py", line 109, in <module>
compute_recommendations()
File "/tmp/af84ad68-0259-4ca1-b464-a118a96f0742/marketing-pages-collaborative-filtering.py", line 59, in compute_recommendations
conf=conf)
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/context.py", line 646, in newAPIHadoopRDD
File "/usr/lib/spark/python/lib/py4j-0.10.3-src.zip/py4j/java_gateway.py", line 1133, in __call__
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
File "/usr/lib/spark/python/lib/py4j-0.10.3-src.zip/py4j/protocol.py", line 319, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.newAPIHadoopRDD.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, marketing-pages-collaborative-filtering-w-1.c.dg-dev-personalization.internal): java.lang.IllegalStateException: Found known file 'data-000000000002.json' with index 2, which isn't less than or equal to than endFileNumber 1!
at com.google.cloud.hadoop.repackaged.com.google.common.base.Preconditions.checkState(Preconditions.java:197)
at com.google.cloud.hadoop.io.bigquery.DynamicFileListRecordReader.setEndFileMarkerFile(DynamicFileListRecordReader.java:327)
at com.google.cloud.hadoop.io.bigquery.DynamicFileListRecordReader.nextKeyValue(DynamicFileListRecordReader.java:177)
at org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:182)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:389)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1324)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1324)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1899)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1899)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1873)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1886)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1899)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1324)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.RDD.take(RDD.scala:1298)
at org.apache.spark.api.python.SerDeUtil$.pairRDDToPython(SerDeUtil.scala:203)
at org.apache.spark.api.python.PythonRDD$.newAPIHadoopRDD(PythonRDD.scala:582)
at org.apache.spark.api.python.PythonRDD.newAPIHadoopRDD(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.IllegalStateException: Found known file 'data-000000000002.json' with index 2, which isn't less than or equal to than endFileNumber 1!
at com.google.cloud.hadoop.repackaged.com.google.common.base.Preconditions.checkState(Preconditions.java:197)
at com.google.cloud.hadoop.io.bigquery.DynamicFileListRecordReader.setEndFileMarkerFile(DynamicFileListRecordReader.java:327)
at com.google.cloud.hadoop.io.bigquery.DynamicFileListRecordReader.nextKeyValue(DynamicFileListRecordReader.java:177)
at org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:182)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:389)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1324)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1324)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1899)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1899)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
... 1 more
17/09/25 10:55:37 INFO org.spark_project.jetty.server.ServerConnector: Stopped ServerConnector#1dfdb336{HTTP/1.1}{0.0.0.0:4040}
ERROR: (gcloud.dataproc.jobs.submit.pyspark) Job [af84ad68-0259-4ca1-b464-a118a96f0742] entered state [ERROR] while waiting for [DONE].
I think I have identified the problem, but I cannot find the cause of the problem. The relevant code snippet is this:
table_rdd = spark.sparkContext.newAPIHadoopRDD(
"com.google.cloud.hadoop.io.bigquery.JsonTextBigQueryInputFormat",
"org.apache.hadoop.io.LongWritable",
"com.google.gson.JsonObject",
conf=conf)
table_json = table_rdd.map(lambda x: x[1])
visit_data = sparkSession.read.json(table_json)
First I create the RDD according to the tutorial from Google. The next step is to extract the JSON elements from the RDD, and this then is read into a table, that we can query.
The stacktrace shows that the exception happens when assigning conf, but the code works until I call sparkSession.read.json(table_json) because as I understood it spark works lazily and only then tries to access the actual JSON files that were exported from BigQuery.
Now the problem is that Spark finds more JSON files than there should be.
According to this comment in the code of the BigQuery Hadoop Library, even if everything fits into one shard, the minimum is two, such that BigQuery recognizes the export as such. Also it says there that it generates a so called end-marker file, which as far as I can say, is just an empty JSON file.
But when running the code the export that is generated by BigQuery has more than the 2 necessary files (1 containing data and 1 as the end-marker). It generates up to 5 JSON files, that sometimes contain just 1 or 2 rows from BigQuery.
I am pretty sure that this is the problem, that the export somehow is wrong. But I cannot find out why this happens and how to fix it. Any help is appreciated.
UPDATE:
I tried something else. I deleted the table in BigQuery and populated it again from scratch. This solved the problem with the export. There are only two files now. But I think the problem still persists. I will try adding some rows via Cloud Functions (which would happen in my application) and then update on the behaviour.
UPDATE 2:
So after waiting a day and adding some rows via streaming inserts using a Cloud Function, the issue happens again. Somehow the exports are partitioned by day. That would not be a problem if each day gets its own shard, but this does not happen unfortunately.
This is a bug in BigQuery (that it returns the output file count statistics that does not include the zero-record file). The fix for this issue has been submitted, and its rollout will complete in about a week.
In the meantime, a workaround of the issue is maybe set the flag "mapred.bq.input.sharded.export.enable" (a.k.a. ENABLE_SHARDED_EXPORT_KEY) to false in your hadoop config when configuring your DataProc job.
UPDATE:
As of today Oct 6 2017, the fix is now 100% rolled out on BigQuery.
How to load a parquet file into vertica database using spark???
link (http://www.sparkexpert.com/2015/04/17/save-apache-spark-dataframe-to-database/)
I tried to load data frame(parquet files) using the above link into mysql it worked. But when i tried to load it into vertica database this is the error i am facing.The error below is because vertica db doesn’t support the datatypes(String) which is in the data frames(parquet file). I do not wanted to type cast the columns since its going to be a performance issue. we are looking to load around 280 million rows. Could you please suggest the best way to load the data into vertica db.
Exception in thread “main” java.sql.SQLSyntaxErrorException: [Vertica][VJDBC](5108) ERROR: Type “TEXT” does not exist
at com.vertica.util.ServerErrorData.buildException(Unknown Source)
at com.vertica.io.ProtocolStream.readExpectedMessage(Unknown Source)
at com.vertica.dataengine.VDataEngine.prepareImpl(Unknown Source)
at com.vertica.dataengine.VDataEngine.prepare(Unknown Source)
at com.vertica.dataengine.VDataEngine.prepare(Unknown Source)
at com.vertica.jdbc.common.SPreparedStatement.(Unknown Source)
at com.vertica.jdbc.jdbc4.S4PreparedStatement.(Unknown Source)
at com.vertica.jdbc.VerticaJdbc4PreparedStatementImpl.(Unknown Source)
at com.vertica.jdbc.VJDBCObjectFactory.createPreparedStatement(Unknown Source)
at com.vertica.jdbc.common.SConnection.prepareStatement(Unknown Source)
at org.apache.spark.sql.DataFrameWriter.jdbc(DataFrameWriter.scala:275)
at org.apache.spark.sql.DataFrame.createJDBCTable(DataFrame.scala:1611)
at com.sparkread.SparkVertica.JdbctoVertica.main(JdbctoVertica.java:51)
Caused by: com.vertica.support.exceptions.SyntaxErrorException: [Vertica][VJDBC](5108) ERROR: Type “TEXT” does not exist
… 13 more
Since you are getting the error on the createJDBCTable, you could just create the table yourself and use insertIntoJDBC instead.
Another idea would be to try and set spark.sql.dialect to Postgres since I noticed registerDialect(PostgresDialect) in spark. That said, I don't know how to do this other than to use jdbc:postgresql, but if you use that driver you would not get any advantage of a optimal insert that Vertica's JDBC driver would give you. You might need to modify here to allow it to use that dialect for jdbc:vertica. If for some reason that doesn't work you'd need to add in a new dialect.
Personally I think the first option is simpler.
When the Vertica table exists with the same column names as the dataFrame (and the corresponding types, VARCHAR) the following has worked for me (while keeping vertica's jdbc):
myDataFrame.write().mode(SaveMode.Append).jdbc(url, "MY_VERTICA_TABLE", new Properties());