I have a data frame as shown below
ID Class Score1 Score2 Name
1 A 9 7 Xavi
2 B 7 8 Alba
3 A 10 8 Messi
4 A 8 10 Neymar
5 A 7 8 Mbappe
6 C 4 6 Silva
7 C 3 2 Pique
8 B 5 7 Ramos
9 B 6 7 Serge
10 C 8 5 Ayala
11 A NaN 4 Casilas
12 A NaN 4 De_Gea
13 B NaN 2 Seaman
14 C NaN 7 Chilavert
15 B NaN 3 Courtous
From the above, I would like to calculate the number of players with scoer1 less than or equal to 6 in each Class along with count of non NaN rows (Class wise)
Expected output:
Class Total_Number Count_Non_NaN Score1_less_than_6_# Avg_score1
A 6 4 0 8.5
B 5 3 2 6
C 4 3 2 5
tried below code
df2 = df.groupby('Class').agg(Total_Number = ('Score1','size'),
Score1_less_than_6 = ('Score1',lambda x: x.between(0,6).sum()),
Avg_score1 = ('Score1','mean'))
df2 = df2.reset_index()
df2
Groupby and aggregate using a dictionary
df['s'] = df['Score1'].le(6)
df.groupby('Class').agg(**{'total_number': ('Score1', 'size'),
'count_non_nan': ('Score1', 'count'),
'score1_less_than_six': ('s', 'sum'),
'avg_score1': ('Score1', 'mean')})
total_number count_non_nan score1_less_than_six avg_score1
Class
A 6 4 0 8.5
B 5 3 2 6.0
C 4 3 2 5.0
Try:
x = df.groupby("Class", as_index=False).agg(
Total_Number=("Class", "count"),
Count_Non_NaN=("Score1", lambda x: x.notna().sum()),
Score1_less_than_6=("Score1", lambda x: (x <= 6).sum()),
Avg_score1=("Score1", "mean"),
)
print(x)
Prints:
Class Total_Number Count_Non_NaN Score1_less_than_6 Avg_score1
0 A 6 4.0 0.0 8.5
1 B 5 3.0 2.0 6.0
2 C 4 3.0 2.0 5.0
This is a sample dataframe and it containsNA:
x y z datetime
0 2 3 4 02-02-2019
1 NA NA NA 03-02-2019
2 3 5 7 04-02-2019
3 NA NA NA 05-02-2019
4 4 7 9 06-02-2019
Now, i want to fill these NA values and i can do this by using either ffill() or bfill(). But what if want to apply the average of the ffill() & bfill(). Then how can i do this?
The direct average df = (df.fill() + df.bfill()) / 2 didn't work because of datetime column.
The end dataframe should look like this:
x y z datetime
0 2 3 4 02-02-2019
1 2.5 4 5.5 03-02-2019
2 3 5 7 04-02-2019
3 3.5 6 8 05-02-2019
4 4 7 9 06-02-2019
Check with df.interpolate:
df.interpolate()
x y z datetime
0 2.0 3.0 4.0 02-02-2019
1 2.5 4.0 5.5 03-02-2019
2 3.0 5.0 7.0 04-02-2019
3 3.5 6.0 8.0 05-02-2019
4 4.0 7.0 9.0 06-02-2019
I am working with two data frames.
The sample data is as follow:
DF = ['A','B','C','D','E','A','C','B','B']
DF1 = pd.DataFrame({'Team':DF})
DF2 = pd.DataFrame({'Team':['A','B','C','D','E'],'Rating':[1,2,3,4,5]})
i want to add a new column to DF1 as follow:
Team Rating
A 1
B 2
C 3
D 4
E 5
A 1
C 3
B 2
B 2
How can I add a new column?
I used
DF1['Rating']= np.where(DF1['Team']== DF2['Team'],DF2['Rating'],0)
Error : ValueError: Can only compare identically-labeled Series objects
Thanks
ZEP
I think need map by Series created with set_index and if not match get NaNs, so fillna was added for replace to 0:
DF1['Rating']= DF1['Team'].map(DF2.set_index('Team')['Rating']).fillna(0)
print (DF1)
Team Rating
0 A 1
1 B 2
2 C 3
3 D 4
4 E 5
5 A 1
6 C 3
7 B 2
8 B 2
DF = ['A','B','C','D','E','A','C','B','B', 'G']
DF1 = pd.DataFrame({'Team':DF})
DF2 = pd.DataFrame({'Team':['A','B','C','D','E'],'Rating':[1,2,3,4,5]})
DF1['Rating']= DF1['Team'].map(DF2.set_index('Team')['Rating']).fillna(0)
print (DF1)
Team Rating
0 A 1.0
1 B 2.0
2 C 3.0
3 D 4.0
4 E 5.0
5 A 1.0
6 C 3.0
7 B 2.0
8 B 2.0
9 G 0.0 <- G not in DF2['Team']
Detail:
print (DF1['Team'].map(DF2.set_index('Team')['Rating']))
0 1.0
1 2.0
2 3.0
3 4.0
4 5.0
5 1.0
6 3.0
7 2.0
8 2.0
9 NaN
Name: Team, dtype: float64
You can use:
In [54]: DF1['new_col'] = DF1.Team.map(DF2.set_index('Team').Rating)
In [55]: DF1
Out[55]:
Team new_col
0 A 1
1 B 2
2 C 3
3 D 4
4 E 5
5 A 1
6 C 3
7 B 2
8 B 2
i think you can use pd.merge
DF1=pd.merge(DF1,DF2,how='left',on='Team')
DF1
Team Rating
0 A 1
1 B 2
2 C 3
3 D 4
4 E 5
5 A 1
6 C 3
7 B 2
8 B 2
I am new to Python and Pandas , can someone help me with below report.
I want to report difference of N columns and create new columns with difference value, is it possible to make it dynamic as I have more than 30 columns. (Columns are fixed numbers, rows values can change)
A and B can be Alpha numeric
Use join with sub for difference of DataFrames:
#if columns are strings, first cast it
df1 = df1.astype(int)
df2 = df2.astype(int)
#if first columns are not indices
#df1 = df1.set_index('ID')
#df2 = df2.set_index('ID')
df = df1.join(df2.sub(df1).add_prefix('sum'))
print (df)
A B sumA sumB
ID
0 10 2.0 5 3.0
1 11 3.0 6 5.0
2 12 4.0 7 5.0
Or similar:
df = df1.join(df2.sub(df1), rsuffix='sum')
print (df)
A B Asum Bsum
ID
0 10 2.0 5 3.0
1 11 3.0 6 5.0
2 12 4.0 7 5.0
Detail:
print (df2.sub(df1))
A B
ID
0 5 3.0
1 6 5.0
2 7 5.0
IIUC
df1[['C','D']]=(df2-df1)[['A','B']]
df1
Out[868]:
ID A B C D
0 0 10 2.0 5 3.0
1 1 11 3.0 6 5.0
2 2 12 4.0 7 5.0
df1.assign(B=0)
Out[869]:
ID A B C D
0 0 10 0 5 3.0
1 1 11 0 6 5.0
2 2 12 0 7 5.0
The 'ID' column should really be an index. See the Pandas tutorial on indexing for why this is a good idea.
df1 = df1.set_index('ID')
df2 = df2.set_index('ID')
df = df1.copy()
df[['C', 'D']] = df2 - df1
df['B'] = 0
print(df)
outputs
A B C D
ID
0 10 0 5 3.0
1 11 0 6 5.0
2 12 0 7 5.0
I'm rather new at python.
I try to have a cumulative sum for each client to see the consequential months of inactivity (flag: 1 or 0). The cumulative sum of the 1's need therefore to be reset when we have a 0. The reset need to happen as well when we have a new client. See below with example where a is the column of clients and b are the dates.
After some research, I found the question 'Cumsum reset at NaN' and 'In Python Pandas using cumsum with groupby'. I assume that I kind of need to put them together.
Adapting the code of 'Cumsum reset at NaN' to the reset towards 0, is successful:
cumsum = v.cumsum().fillna(method='pad')
reset = -cumsum[v.isnull() !=0].diff().fillna(cumsum)
result = v.where(v.notnull(), reset).cumsum()
However, I don't succeed at adding a groupby. My count just goes on...
So, a dataset would be like this:
import pandas as pd
df = pd.DataFrame({'a' : [1,1,1,1,1,1,1,2,2,2,2,2,2,2],
'b' : [1/15,2/15,3/15,4/15,5/15,6/15,1/15,2/15,3/15,4/15,5/15,6/15],
'c' : [1,0,1,0,1,1,0,1,1,0,1,1,1,1]})
this should result in a dataframe with the columns a, b, c and d with
'd' : [1,0,1,0,1,2,0,1,2,0,1,2,3,4]
Please note that I have a very large dataset, so calculation time is really important.
Thank you for helping me
Use groupby.apply and cumsum after finding contiguous values in the groups. Then groupby.cumcount to get the integer counting upto each contiguous value and add 1 later.
Multiply with the original row to create the AND logic cancelling all zeros and only considering positive values.
df['d'] = df.groupby('a')['c'] \
.apply(lambda x: x * (x.groupby((x != x.shift()).cumsum()).cumcount() + 1))
print(df['d'])
0 1
1 0
2 1
3 0
4 1
5 2
6 0
7 1
8 2
9 0
10 1
11 2
12 3
13 4
Name: d, dtype: int64
Another way of doing would be to apply a function after series.expanding on the groupby object which basically computes values on the series starting from the first index upto that current index.
Use reduce later to apply function of two args cumulatively to the items of iterable so as to reduce it to a single value.
from functools import reduce
df.groupby('a')['c'].expanding() \
.apply(lambda i: reduce(lambda x, y: x+1 if y==1 else 0, i, 0))
a
1 0 1.0
1 0.0
2 1.0
3 0.0
4 1.0
5 2.0
6 0.0
2 7 1.0
8 2.0
9 0.0
10 1.0
11 2.0
12 3.0
13 4.0
Name: c, dtype: float64
Timings:
%%timeit
df.groupby('a')['c'].apply(lambda x: x * (x.groupby((x != x.shift()).cumsum()).cumcount() + 1))
100 loops, best of 3: 3.35 ms per loop
%%timeit
df.groupby('a')['c'].expanding().apply(lambda s: reduce(lambda x, y: x+1 if y==1 else 0, s, 0))
1000 loops, best of 3: 1.63 ms per loop
I think you need custom function with groupby:
#change row with index 6 to 1 for better testing
df = pd.DataFrame({'a' : [1,1,1,1,1,1,1,2,2,2,2,2,2,2],
'b' : [1/15,2/15,3/15,4/15,5/15,6/15,1/15,2/15,3/15,4/15,5/15,6/15,7/15,8/15],
'c' : [1,0,1,0,1,1,1,1,1,0,1,1,1,1],
'd' : [1,0,1,0,1,2,3,1,2,0,1,2,3,4]})
print (df)
a b c d
0 1 0.066667 1 1
1 1 0.133333 0 0
2 1 0.200000 1 1
3 1 0.266667 0 0
4 1 0.333333 1 1
5 1 0.400000 1 2
6 1 0.066667 1 3
7 2 0.133333 1 1
8 2 0.200000 1 2
9 2 0.266667 0 0
10 2 0.333333 1 1
11 2 0.400000 1 2
12 2 0.466667 1 3
13 2 0.533333 1 4
def f(x):
x.ix[x.c == 1, 'e'] = 1
a = x.e.notnull()
x.e = a.cumsum()-a.cumsum().where(~a).ffill().fillna(0).astype(int)
return (x)
print (df.groupby('a').apply(f))
a b c d e
0 1 0.066667 1 1 1
1 1 0.133333 0 0 0
2 1 0.200000 1 1 1
3 1 0.266667 0 0 0
4 1 0.333333 1 1 1
5 1 0.400000 1 2 2
6 1 0.066667 1 3 3
7 2 0.133333 1 1 1
8 2 0.200000 1 2 2
9 2 0.266667 0 0 0
10 2 0.333333 1 1 1
11 2 0.400000 1 2 2
12 2 0.466667 1 3 3
13 2 0.533333 1 4 4