In columnar storage all analytical query will be faster than the row-store. what if the records to be included in a query is filtered with a criteria?
select sum(A.a) from A where A.b > 100 and A.c <= 10;
How does columnar storage manage filtering when columns are stored separately. Also how does it apply join across various tables.
cstore_fdw uses block range filters for each column block. It first checks the data range is compatible with the filter before reading column data. Therefore, if your data distribution along the filtered column helps removal of data blocks, then you would get significant performance gains.
Regarding joins, cstore_fdw does not perform any operation. It composes rows of data and forwards that to postgres engine for further processing. Further processing might be anything like aggregation, window function processing or join operation.
Related
Looking for efficient partitioning strategies for my dataframe when storing my dataframe in the delta table.
My current dataframe 1.5000.000 rowa it takes 3.5h to move data from dataframe to delta table.
Looking for a more efficient way to do this writing I decided to try different columns of my table as partitioning columns.I searched for the cardinality of my columns and selected the following ones.
column1 = have 3 distinct_values
column2 = have 7 distinct values
column3 = have 26 disctinc values
column4 = have 73 distinc values
column5 = have 143 distinc values
column6 = have 246 distinct values
column7 = have 543 disctinc values
cluster: 64GB, 8 cores
using the folloging code in my notebook
df.write.partitionBy("column_1").format("delta").mode("overwrite").save(partition_1)
..
df.write.partitionBy("column_7").format("delta").mode("overwrite").save(partition7)
Thus, I wanted to see which partitioning strategy would bring better results: a column with high cardinality, one with low cardinality or one in between.
To my surprise this has not had any effect as it has taken practically the same time in all of them with differences of a few minutes but all of them with + 3h.
why have I failed ? is there no advantage to partitioning ?
When you use Delta (either Databricks or OSS Delta 1.2.x, better 2.0) then often you may not need to use partitioning at all for following reasons (that aren't applicable for Parquet or other file formats):
Delta supports data skipping that allows to read only necessary files, especially effective when you use it in combination with OPTIMIZE ZORDER BY that will put related data closer to each other.
Bloom filters allow to skip files even more granularly.
The rules of thumb of using partitioning with Delta lake tables are following:
use it when it will benefit queries, especially when you perform MERGE into the table, because it allows to avoid conflicts between parallel transactions
when it helps to delete old data (for example partitioning by date)
when it really benefits your queries. For example, you have data per country, and most of queries will use country as a part of condition. Or for example, when you partition by date, and querying data based on the time...
In all cases, don't use partitioning for high cardinality columns (hundreds of values) and having too many partition columns because in most cases it lead to creation of small files that are less efficient to read (each file is accessed separately), plus it leads to increased load to the driver as it needs to keep metadata for each of the file.
We know in SQL, an index can be created on a column if it is frequently used for filtering. Is there anything similar I can do in spark? Let's say I have a big table T containing a column C I want to filter on. I want to filter 10s of thousands of id sets on the column C. Can I sort/orderBy column C, cache the result, and then filter all the id sets with the sorted table? Will it help like indexing in SQL?
You should absolutely build the table/dataset/dataframe with a sorted id if you will query on it often. It will help predicate pushdown. and in general give a boost in performance.
When executing queries in the most generic and basic manner, filtering
happens very late in the process. Moving filtering to an earlier phase
of query execution provides significant performance gains by
eliminating non-matches earlier, and therefore saving the cost of
processing them at a later stage. This group of optimizations is
collectively known as predicate pushdown.
Even if you aren't sorting data you may want to look at storing the data in file with 'distribute by' or 'cluster by'. It is very similar to repartitionBy. And again only boosts performance if you intend to query the data as you have distributed the data.
If you intend to requery often yes, you should cache data, but in general there aren't indexes. (There are file types that help boost performance if you have specific query type needs. (Row based/columnar based))
You should look at the Spark Specific Performance tuning options. Adaptive query is a next generation that helps boost performance, (without indexes)
If you are working with Hive: (Note they have their own version of partitions)
Depending on how you will query the data you may also want to look at partitioning or :
[hive] Partitioning is mainly helpful when we need to filter our data based
on specific column values. When we partition tables, subdirectories
are created under the table’s data directory for each unique value of
a partition column. Therefore, when we filter the data based on a
specific column, Hive does not need to scan the whole table; it rather
goes to the appropriate partition which improves the performance of
the query. Similarly, if the table is partitioned on multiple columns,
nested subdirectories are created based on the order of partition
columns provided in our table definition.
Hive Partitioning is not a magic bullet and will slow down querying if the pattern of accessing data is different than the partitioning. It make a lot of sense to partition by month if you write a lot of queries looking at monthly totals. If on the other hand the same table was used to look at sales of product 'x' from the beginning of time, it would actually run slower than if the table wasn't partitioned. (It's a tool in your tool shed.)
Another hive specific tip:
The other thing you want to think about, and is keeping your table stats. The Cost Based Optimizer uses those statistics to query your data. You should make sure to keep them up to date. (Re-run after ~30% of your data has changed.)
ANALYZE TABLE [db_name.]tablename [PARTITION(partcol1[=val1], partcol2[=val2], ...)] -- (Note: Fully support qualified table name
since Hive 1.2.0, see HIVE-10007.)
COMPUTE STATISTICS
[FOR COLUMNS] -- (Note: Hive 0.10.0 and later.)
[CACHE METADATA] -- (Note: Hive 2.1.0 and later.)
[NOSCAN];
I have a parquet file and created a new External table, but the performance is very slow as compare to a normal table in the synapse. Can you please let me know how to over come this.
Very broad question. So I'll give broad answer:
Use normal table. Hard to beat performance of "normal table" with external tables. "normal table" means a table created in a Dedicated SQL pool using CREATE TABLE. If you're querying data from one or more tables repeatedly and each query is different (group-by, join, selected columns) then you can't get beat performance of "normal" table with external tables.
Understand and apply basic best practices:
Use parquet format, which you're doing.
Pick right partition column and partition your data by storing partitions to different folders or file names.
If a query targets a single large file, you'll benefit from splitting it into multiple smaller files.
Try to keep your CSV (if using csv) file size between 100 MB and 10 GB.
Use correct data type.
Manually create statistics for CSV files
Use CETAS to enhance query performance and joins
...and many more.
a) The first step is to partition your Parquet File using a relevant partition column, such as Year, Month, and Date.
b) I recommend using a View rather than an external table as a second recommendation. External Tables don't support Partition Prunning and won't use the partition columns to eliminate unnecessary files during the read.
c) Assure that data types are enforced, and that string types are being used appropriately.
d) If possible, convert your Parquet file to Delta format. Synapse is able to read Partition columns from Delta without the need for the filepath() and filename() functions. External tables do not support Delta, only views.
Note: External tables doesn't support Parquet partition columns.
SELECT *,
CAST(fct.filepath(1) AS SMALLINT) AS SalesOrderPathYear,
CAST(fct.filepath(2) AS TINYINT) AS SalesOrderPathMonth,
CAST(fct.filepath(3) AS DATE) AS SalesOrderPathDate
FROM
OPENROWSET
(
BULK 'conformed/facts/factsales/*/*/*/*.parquet',
DATA_SOURCE = 'ExternalDataSourceDataLake',
FORMAT = 'Parquet'
) AS fct
WITH
(
ColA as String(10),
ColB as Integer,
ColC as ...
)
Ref: https://www.serverlesssql.com/certification/mastering-dp-500-exam-querying-partitioned-sources-in-azure-storage/
I am new to column store db family and some of the concepts are not yet completely clear to me. I want to use MemSQL to store sparse matrix.
The table would look something like this:
CREATE TABLE matrix (
r_id INT,
c_id INT,
cell_data VARCHAR(10),
KEY (`r_id`, `c_id`) USING CLUSTERED COLUMNSTORE,
);
The Queries:
SELECT c_id, cell_data FROM matrix WHERE r_id=<val>; i.e. whole row
SELECT r_id, cell_data FROM matrix WHERE c_id=<val>; i.e. whole column
SELECT cell_data FROM matrix WHERE r_id=<val1> AND c_id=<val2>; i.e. one cell
UPDATE matrix SET cell_data=<val> WHERE r_id=<val1> AND c_id=<val2>;
INSERT INTO matrix VALUES (<v1>, <v2>, <v3>);
The queries 1 and 2 are about equally frequent and 3, 4 and 5 are also equally frequent. One of Q1,2 are equally frequent as one of Q3,4,5 (i.e. Q1,2:Q3,4,5 ~= 1:1).
I do realize that inserting into column store one row at a time creates Row segment group for each insert and thus degrading performance. I cannot batch the inserts. Also I cannot use in-memory row store (the matrix is too big).
I have three questions:
Does the issue with single row inserts concern updates too if only cell_data is changed (i.e. Q4)?
Would it be possible to have in-memory row table in which I would do INSERT (?and UPDATE?) operations and periodically batch the contents to column table?
How would I perform Q1,2 if I need most recent data (?UNION ALL?)?
Is it possible avoid executing Q3 for both tables (?which would mean two round trips?)?
I am concerned by execution speed of Q1 and Q2. Is the Clustered key optimal for those. I am not sure how the records would be stored with table above.
1.
Yes, single-row updates also perform poorly - they are essentially a delete and an insert.
2.
Yes, and in fact we automatically do this behind the scenes - the most recently inserted data (if it is too small a number of rows to be a good columnar segment) is kept in an in-memory rowstore form, and read queries are essentially looking at a UNION ALL of that data and the column-oriented data. We then batch up this data to write into column-oriented form.
If that doesn't work well enough, depending on your workload, you may benefit from explicitly keeping some of your data in a rowstore table instead of relying on the above behavior, in which case:
2a. yes, to see the most recent data you would use UNION ALL
2b. the data could be in either table, so you would have to query both (like for Q1,2, using UNION ALL works). This does not do two round trips, just one.
3.
You can either order by r or c first in the columnstore key - r in your current schema. This makes queries for a row efficient, but queries for a column are going to be very inefficient, they may have to scan basically the full table (depending on the patterns in your data). Unfortunately columnstore tables do not support using multiple keys, so there is no good way to solve this. One potential hacky solution is to maintain two copies of your table, one with key (r, c) and one with key (c, r) - this is essentially manually maintaining two indexes.
Based on the workload you're describing, it sounds like you are doing many single-row queries (Q3,4,5, which is 50% of the workload), which rowstore is much better suited for than columnstore (see http://docs.memsql.com/latest/concepts/columnstore/). Unfortunately, if it doesn't fit in memory, there isn't really a good way around this other than perhaps to add more memory.
Scenario: I have a lookup table created (input is JSON file of around 50 Mb) and cached in memory so that it can be looked up while processing each row of the input file (around 10000 data points in each input file).
Problem: Does dataframe.filter(...).select(...) method in spark perform a sequential search or hash search? How can we retrieve data faster in this case? Also, I was wondering if i need to create a index on it or create a hash table of it (if i need to, i am not sure how its done for dataframes).
As far as I know - neither of them. Select in DataFrames only projects the selected columns, it is not choosing specific records so no searching algorithm is required.
To obtain specific records as you would do with the WHERE clause in standard SQL, you have to select() columns you are interested in and then filter them with filter() method.