I'm using matplotlib.axes.Axes.twinx to have a shared x-axis in matplotlib for both . I dont know why instead of 13 bars to be plotted, only 12 of them are getting plotted.
Link of Data set
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
dataFrame=pd.read_csv("NEM.csv",sep=',')
dataFrame['ratio']=dataFrame['Expert']/dataFrame['Novice']
fig, ax1 = plt.subplots(figsize=(9, 6))
ax1.set_title('N-E Analysis')
xticklabels=dataFrame['Task'].tolist()
ax1.plot('Novice', data=dataFrame, marker='', color='dodgerblue', linewidth=2,label='Novice',zorder=100)
ax1.plot('Expert', data=dataFrame, marker='', color='darkorange', linewidth=2,label='Expert',zorder=200)
plt.ylim(0,120)
ax2 = ax1.twinx()
ax2.bar('Task','ratio', data=dataFrame, color='gray',width=0.35,label='NE',zorder=0)
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax1.set_xticklabels(xticklabels, rotation = 45, ha="right")
ax1.yaxis.grid()
ax1.tick_params(left='off',bottom='off')
ax2.tick_params(right='off')
plt.ylim(0,12)
h1, l1 = ax1.get_legend_handles_labels()
h2, l2 = ax2.get_legend_handles_labels()
p=ax1.legend(h2+h1, l2+l1, loc=2,frameon=False)
fig.tight_layout()
plt.show()
When using plots, it could be good practice to say explicitily how many bars or points you are going to plot. For instance, you can create an x-axis this way:
x_axis = np.arange(len(dataFrame[Task].tolist())
then:
ax1.plot(x_axis, dataFrame['Novice'].tolist(), ...)
after that you rename the xticklabels like this:
ax1.set_xticks(x_axis)
ax1.set_xticklabels(dataFrame[Task].tolist())
Do the same with the bar graph:
ax2.bar(x_axis, dataFrame['Ratio'].tolist(), ...)
This should do the trick.
Hope it helps.
Related
I have dataframe like this:
df_meshX_min_select = pd.DataFrame({
'Number of Elements' : [5674, 8810,13366,19751,36491],
'Time (a)' : [42.14, 51.14, 55.64, 55.14, 56.64],
'Different Result(Temperature)' : [0.083849, 0.057309, 0.055333, 0.060516, 0.035343]})
and I tried to combine bar plot (number of elements Vs Different result) and line plot (Number of elements Vs Time) in the same figure, but I found the following problem like this:
it seems that x_value doesn't match when combining 2 plots, but if you see the data frame, the x value is exactly the same value.
My expectation is combining these 2 plots into 1 figure:
and this is the code that I made:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
df_meshX_min_select = pd.DataFrame({
'Number of Elements' : [5674, 8810,13366,19751,36491],
'Time (a)' : [42.14, 51.14, 55.64, 55.14, 56.64],
'Different Result(Temperature)' : [0.083849, 0.057309, 0.055333, 0.060516, 0.035343]})
x1= df_meshX_min_select["Number of Elements"]
t1= df_meshX_min_select["Time (a)"]
T1= df_meshX_min_select["Different Result(Temperature)"]
#Create combo chart
fig, ax1 = plt.subplots(figsize=(10,6))
color = 'tab:green'
#bar plot creation
ax1.set_title('Mesh Analysis', fontsize=16)
ax1.set_xlabel('Number of elements', fontsize=16)
ax1.set_ylabel('Different Result(Temperature)', fontsize=16)
ax1 = sns.barplot(x='Number of Elements', y='Different Result(Temperature)', data = df_meshX_min_select)
ax1.tick_params(axis='y')
#specify we want to share the same x-axis
ax2 = ax1.twinx()
color = 'tab:red'
#line plot creation
ax2.set_ylabel('Time (a)', fontsize=16)
ax2 = sns.lineplot(x='Number of Elements', y='Time (a)', data = df_meshX_min_select, sort=False, color=color, ax=ax2)
ax2.tick_params(axis='y', color=color)
#show plot
plt.show()
Anyone can help me, please?
Seaborn and pandas use a categorical x-axis for bar plots (internally numbered 0,1,2,...) and floating-point numbers for a line plot. Note that your x-values aren't evenly spaced, so either the bars would have weird distances between them, or wouldn't align with the x-values from the line plot.
Here is a solution using standard matplotlib to combine both graphs.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
df_meshx_min_select = pd.DataFrame({
'number of elements': [5674, 8810, 13366, 19751, 36491],
'time (a)': [42.14, 51.14, 55.64, 55.14, 56.64],
'different result(temperature)': [0.083849, 0.057309, 0.055333, 0.060516, 0.035343]})
x1 = df_meshx_min_select["number of elements"]
t1 = df_meshx_min_select["time (a)"]
d1 = df_meshx_min_select["different result(temperature)"]
fig, ax1 = plt.subplots(figsize=(10, 6))
color = 'limegreen'
ax1.set_title('mesh analysis', fontsize=16)
ax1.set_xlabel('number of elements', fontsize=16)
ax1.set_ylabel('different result(temperature)', fontsize=16, color=color)
ax1.bar(x1, height=d1, width=2000, color=color)
ax1.tick_params(axis='y', colors=color)
ax2 = ax1.twinx() # share the x-axis, new y-axis
color = 'crimson'
ax2.set_ylabel('time (a)', fontsize=16, color=color)
ax2.plot(x1, t1, color=color)
ax2.tick_params(axis='y', colors=color)
plt.show()
I was plotting a boxplot with a lineplot and I had the same problem even my two x-axes are identical, so I solved converting my x-axis feature to type string:
df_meshX_min_select['Number of Elements'] = df_meshX_min_select['Number of Elements'].astype('string')
This way the plot works using seaborn:
I am using subplots in a function which is using a slider widget inputs to calculate some stuff and plotting results.
I want to turn on the grid for all subplots of ax1. But somehow jupternotebooks only turns it on only on the last plot...
import numpy as np
from matplotlib import pyplot as plt
import ipywidgets as widgets
from IPython.html.widgets import interact
%matplotlib inline
## Plot
fig, ax1 = plt.subplots(6,2)
plt.subplots_adjust(right = 2, top = 8 )
# Show the major grid lines with dark grey lines
plt.grid(b=True, which='major', color='#666666', linestyle='-')
# Show the minor grid lines with very faint and almost transparent grey lines
plt.minorticks_on()
plt.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2)
## Giergeschwindigkeit über v und ay
ax1[0,0].plot(v_ms, omega)
ax1[0,0].set_ylabel('Giergeschwindigkeit [rad/s]')
ax1[0,0].set_xlabel('Geschwindigkeit [m/s]')
ax1[0,0].set_title('Giergeschwindigkeit über Geschwindigkeit')
# ... more subplots
plt.show()
It looks like this:
And can you explain to me why in my case
ax1.grid()
throws an error?
AttributeError: 'numpy.ndarray' object has no attribute 'grid'
This is because plt will only operate on the last-created axes object.
And the reason you're getting that error is that ax1 is a numpy n-dimensional array, not an axes object.
You can do this to iterate over the numpy n-dimensional array to create the grids:
for row in axes:
for ax in row:
ax.grid(b=True, which='major', color='#666666', linestyle='-')
ax.minorticks_on()
ax.grid(b=True, which='minor', color='#999999', linestyle='-',alpha=0.2)
Result (without plt.subplots_adjust()):
You can set grid for every ax object, so in your case you should set like this:
ax1[0,0].grid()
ax1[0,1].grid()
I can generate an error-bar plot using the code below. The graph produced by the code shows vertical lines that represent the errors in y. I would like to have horizontal lines at the tips of these errors ("error bars") and am not sure how to do so.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(1, 10, 10, dtype=int)
y = 2**x
yerr = np.sqrt(y)*10
fig, ax = plt.subplots()
ax.errorbar(x, y, yerr, solid_capstyle='projecting')
ax.grid(alpha=0.5, linestyle=':')
plt.show()
plt.close(fig)
The code generates the figure below. I've played with the solid_capstyle kwarg. Is there a specific kwarg that does what I am trying to do?
And as an example of what I'd like, the figure below:
In case it's relevant, I am using matplotlib 2.2.2
The argument you are looking for is capsize= in ax.errorbar(). The default is None so the length of the cap will default to the value of matplotlib.rcParams["errorbar.capsize"]. The number you give will be the length of the cap in points:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(1, 10, 10, dtype=int)
y = 2**x
yerr = np.sqrt(y)*10
fig, ax = plt.subplots()
ax.errorbar(x, y, yerr, solid_capstyle='projecting', capsize=5)
ax.grid(alpha=0.5, linestyle=':')
plt.show()
With the following code I create four histograms:
import numpy as np
import pandas as pd
data = pd.DataFrame(np.random.normal((1, 2, 3 , 4), size=(100, 4)))
data.hist(bins=10)
I want the histograms to look like this:
I know how to make it one graph at the time, see here
But how can I do it for multiple histograms without specifying each single one? Ideally I could use 'pd.scatter_matrix'.
Plot each histogram seperately and do the fit to each histogram as in the example you linked or take a look at the hist api example here. Essentially what should be done is
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
fig = plt.figure()
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)
for ax in [ax1, ax2, ax3, ax4]:
n, bins, patches = ax.hist(**your_data_here**, 50, normed=1, facecolor='green', alpha=0.75)
bincenters = 0.5*(bins[1:]+bins[:-1])
y = mlab.normpdf( bincenters, mu, sigma)
l = ax.plot(bincenters, y, 'r--', linewidth=1)
plt.show()
Given the shape file available here: I know can produce the basic map that I need with county labels and even some points on the map (see below). The issue I'm having is that I cannot seem to control the size of the figure with figsize.
Here's what I have:
import geopandas as gpd
import matplotlib.pyplot as plt
%matplotlib inline
figsize=5,5
fig = plt.figure(figsize=(figsize),dpi=300)
shpfileshpfile=r'Y:\HQ\TH\Groups\NR\PSPD\Input\US_Counties\cb_2015_us_county_20m.shp'
c=gpd.read_file(shpfile)
c=c.loc[c['GEOID'].isin(['26161','26093','26049','26091','26075','26125','26163','26099','26115','26065'])]
c['coords'] = c['geometry'].apply(lambda x: x.representative_point().coords[:])
c['coords'] = [coords[0] for coords in c['coords']]
ax=c.plot()
#Control some attributes regarding the axis (for the plot above)
ax.spines['top'].set_visible(False);ax.spines['bottom'].set_visible(False);ax.spines['left'].set_visible(False);ax.spines['right'].set_visible(False)
ax.tick_params(axis='y',which='both',left='off',right='off',color='none',labelcolor='none')
ax.tick_params(axis='x',which='both',top='off',bottom='off',color='none',labelcolor='none')
for idx, row in c.iterrows():
ax.annotate(s=row['NAME'], xy=row['coords'],
horizontalalignment='center')
lat2=[42.5,42.3]
lon2=[-84,-83.5]
#Add another plot...
ax.plot(lon2,lat2,alpha=1,marker='o',linestyle='none',markeredgecolor='none',markersize=15,color='white')
plt.show()
As you can see, I opted to call the plots by the axis name because I need to control attributes of the axis, such as tick_params. I'm not sure if there is a better approach. This seems like a "no-brainer" but I can't seem to figure out why I can't control the figure size.
Thanks in advance!
I just had to do the following:
Use fig, ax = plt.subplots(1, 1, figsize = (figsize))
2.use the ax=ax argument in c.plot()
import geopandas as gpd
import matplotlib.pyplot as plt
%matplotlib inline
figsize=5,5
#fig = plt.figure(figsize=(figsize),dpi=300)
#ax = fig.add_subplot(111)
fig, ax = plt.subplots(1, 1, figsize = (figsize))
shpfileshpfile=r'Y:\HQ\TH\Groups\NR\PSPD\Input\US_Counties\cb_2015_us_county_20m.shp'
c=gpd.read_file(shpfile)
c=c.loc[c['GEOID'].isin(['26161','26093','26049','26091','26075','26125','26163','26099','26115','26065'])]
c['coords'] = c['geometry'].apply(lambda x: x.representative_point().coords[:])
c['coords'] = [coords[0] for coords in c['coords']]
c.plot(ax=ax)
ax.spines['top'].set_visible(False);ax.spines['bottom'].set_visible(False);ax.spines['left'].set_visible(False);ax.spines['right'].set_visible(False)
ax.tick_params(axis='y',which='both',left='off',right='off',color='none',labelcolor='none')
ax.tick_params(axis='x',which='both',top='off',bottom='off',color='none',labelcolor='none')
for idx, row in c.iterrows():
ax.annotate(s=row['NAME'], xy=row['coords'],
horizontalalignment='center')
lat2=[42.5,42.3]
lon2=[-84,-83.5]
ax.plot(lon2,lat2,alpha=1,marker='o',linestyle='none',markeredgecolor='none',markersize=15,color='white')