Collect only not null columns of each row to an array - apache-spark

The difficulty is is that I'm trying to avoid UDFs as much as possible.
I have a dataset "wordsDS", which contains many null values:
+------+------+------+------+
|word_0|word_1|word_2|word_3|
+------+------+------+------+
| a| b| null| d|
| null| f| m| null|
| null| null| d| null|
+--------------+------+-----|
I need to collect all of the columns for each row to array. I don't know the number of columns in advance, so I'm using columns() method.
groupedQueries = wordsDS.withColumn("collected",
functions.array(Arrays.stream(wordsDS.columns())
.map(functions::col).toArray(Column[]::new)));;
But this approach produces empty elements:
+--------------------+
| collected|
+--------------------+
| [a, b,,d]|
| [, f, m,,]|
| [,, d,,]|
+--------------------+
Instead, I need the following result:
+--------------------+
| collected|
+--------------------+
| [a, b, d]|
| [f, m]|
| [d]|
+--------------------+
So basically, I need to collect all of the columns for each row to array with the following requirements:
Resulting array doesn't contain empty elements.
Don't know number of columns upfront.
I've also though of the approach of filter the dataset's "collected" column for empty values, but can't come up with anything else except UDF. I'm trying to avoid UDFs in order not to kill performance, if anyone could suggest a way to filter the dataset's "collected" column for empty values with as little overhead as possible, that would be really helpful.

you can use array("*") to get all the elements into 1 array, then use array_except (needs Spark 2.4+) to filter out nulls:
df
.select(array_except(array("*"),array(lit(null))).as("collected"))
.show()
gives
+---------+
|collected|
+---------+
|[a, b, d]|
| [f, m]|
| [d]|
+---------+

spark <2.0 you can use def to remove null
scala> var df = Seq(("a", "b", "null", "d"),("null", "f", "m", "null"),("null", "null", "d", "null")).toDF("word_0","word_1","word_2","word_3")
scala> def arrayNullFilter = udf((arr: Seq[String]) => arr.filter(x=>x != "null"))
scala> df.select(array('*).as('all)).withColumn("test",arrayNullFilter(col("all"))).show
+--------------------+---------+
| all| test|
+--------------------+---------+
| [a, b, null, d]|[a, b, d]|
| [null, f, m, null]| [f, m]|
|[null, null, d, n...| [d]|
+--------------------+---------+
hope this helps you.

display(df_part_groups.withColumn("combined", F.array_except(F.array("*"), F.array(F.lit("null"))) ))
This statement doesn't remove the null. It keeps the distinct occurrences of null.
Use this instead:
display(df_part_groups.withColumn("combined", F.array_except(F.array("*"), F.array(F.lit(""))) ))

Related

Pyspark -- Filter ArrayType rows which contain null value

I am a beginner of PySpark. Suppose I have a Spark dataframe like this:
test_df = spark.createDataFrame(pd.DataFrame({"a":[[1,2,3], [None,2,3], [None, None, None]]}))
Now I hope to filter rows that the array DO NOT contain None value (in my case just keep the first row).
I have tried to use:
test_df.filter(array_contains(test_df.a, None))
But it does not work and throws an error:
AnalysisException: "cannot resolve 'array_contains(a, NULL)' due to
data type mismatch: Null typed values cannot be used as
arguments;;\n'Filter array_contains(a#166, null)\n+- LogicalRDD
[a#166], false\n
How should I filter in the correct way? Many thanks!
You need to use the forall function.
df = test_df.filter(F.expr('forall(a, x -> x is not null)'))
df.show(truncate=False)
You can use aggregate higher order function to count the number of nulls and filter rows with the count = 0. This will enable you to drop all rows with at least 1 None within the array.
data_ls = [
(1, ["A", "B"]),
(2, [None, "D"]),
(3, [None, None])
]
data_sdf = spark.sparkContext.parallelize(data_ls).toDF(['a', 'b'])
data_sdf.show()
+---+------+
| a| b|
+---+------+
| 1|[A, B]|
| 2| [, D]|
| 3| [,]|
+---+------+
# count the number of nulls within an array
data_sdf. \
withColumn('c', func.expr('aggregate(b, 0, (x, y) -> x + int(y is null))')). \
show()
+---+------+---+
| a| b| c|
+---+------+---+
| 1|[A, B]| 0|
| 2| [, D]| 1|
| 3| [,]| 2|
+---+------+---+
Once you have the column created you can apply the filter as filter(func.col('c')==0).
You can use exists function:
test_df.filter("!exists(a, x -> x is null)").show()
#+---------+
#| a|
#+---------+
#|[1, 2, 3]|
#+---------+

Count of rows containing null values in pyspark

Consider a pyspark dataframe for example
columns = ['id', 'dogs', 'cats']
vals = [(1, 2, 0),(None, 0, 1),(5,None,9)]
df=spark.createDataFrame(vals,columns)
df.show()
+----+----+----+
| id|dogs|cats|
+----+----+----+
| 1| 2| 0|
|null| 0| 1|
| 5|null| 9|
+----+----+----+
I want to write a code which returns 2 as the number of rows containing null values
df.subtract(df.dropna()).count()
The df.dropna() returns a new dataframe where any row containing a null is removed; this dataframe is then subtracted (the equivalent of SQL EXCEPT) from the original dataframe to keep only the rows with nulls in them.
This is obviously not as pretty as if you were only looking at a single column, but this is the simplest way I know to do this when all columns are involved.

PySpark: Subtract Dataframe Ignoring Some Columns

I want to perform subtract between 2 dataframes in pyspark. Challenge is that I have to ignore some columns while subtracting dataframe. But end dataframe should have all the columns, including ignored columns.
Here is an example:
userLeft = sc.parallelize([
Row(id=u'1',
first_name=u'Steve',
last_name=u'Kent',
email=u's.kent#email.com',
date1=u'2017-02-08'),
Row(id=u'2',
first_name=u'Margaret',
last_name=u'Peace',
email=u'marge.peace#email.com',
date1=u'2017-02-09'),
Row(id=u'3',
first_name=None,
last_name=u'hh',
email=u'marge.hh#email.com',
date1=u'2017-02-10')
]).toDF()
userRight = sc.parallelize([
Row(id=u'2',
first_name=u'Margaret',
last_name=u'Peace',
email=u'marge.peace#email.com',
date1=u'2017-02-11'),
Row(id=u'3',
first_name=None,
last_name=u'hh',
email=u'marge.hh#email.com',
date1=u'2017-02-12')
]).toDF()
Expected:
ActiveDF = userLeft.subtract(userRight) ||| Ignore "date1" column while subtracting.
End result should look something like this including "date1" column.
+----------+--------------------+----------+---+---------+
| date1| email|first_name| id|last_name|
+----------+--------------------+----------+---+---------+
|2017-02-08| s.kent#email.com| Steve| 1| Kent|
+----------+--------------------+----------+---+---------+
Seems you need anti-join:
userLeft.join(userRight, ["id"], "leftanti").show()
+----------+----------------+----------+---+---------+
| date1| email|first_name| id|last_name|
+----------+----------------+----------+---+---------+
|2017-02-08|s.kent#email.com| Steve| 1| Kent|
+----------+----------------+----------+---+---------+
You can also use a full join and only keep null values:
userLeft.join(
userRight,
[c for c in userLeft.columns if c != "date1"],
"full"
).filter(psf.isnull(userLeft.date1) | psf.isnull(userRight.date1)).show()
+------------------+----------+---+---------+----------+----------+
| email|first_name| id|last_name| date1| date1|
+------------------+----------+---+---------+----------+----------+
|marge.hh#email.com| null| 3| hh|2017-02-10| null|
|marge.hh#email.com| null| 3| hh| null|2017-02-12|
| s.kent#email.com| Steve| 1| Kent|2017-02-08| null|
+------------------+----------+---+---------+----------+----------+
If you want to use joins, whether it's leftanti or full you'll need to find default values for your null in the joining columns (I think we discussed it in a previous thread).
You can also just drop the column that bothers you subtract and join:
df = userLeft.drop("date1").subtract(userRight.drop("date1"))
userLeft.join(df, df.columns).show()
+----------------+----------+---+---------+----------+
| email|first_name| id|last_name| date1|
+----------------+----------+---+---------+----------+
|s.kent#email.com| Steve| 1| Kent|2017-02-08|
+----------------+----------+---+---------+----------+

Get IDs for duplicate rows (considering all other columns) in Apache Spark

I have a Spark sql dataframe, consisting of an ID column and n "data" columns, i.e.
id | dat1 | dat2 | ... | datn
The id columnn is uniquely determined, whereas, looking at dat1 ... datn there may be duplicates.
My goal is to find the ids of those duplicates.
My approach so far:
get the duplicate rows using groupBy:
dup_df = df.groupBy(df.columns[1:]).count().filter('count > 1')
join the dup_df with the entire df to get the duplicate rows including id:
df.join(dup_df, df.columns[1:])
I am quite certain that this is basically correct, it fails because the dat1 ... datn columns contain null values.
To do the join on null values, I found .e.g this SO post. But this would require to construct a huge "string join condition".
Thus my questions:
Is there a simple / more generic / more pythonic way to do joins on null values?
Or, even better, is there another (easier, more beautiful, ...) method to get the desired ids?
BTW: I am using Spark 2.1.0 and Python 3.5.3
If number ids per group is relatively small you can groupBy and collect_list. Required imports
from pyspark.sql.functions import collect_list, size
example data:
df = sc.parallelize([
(1, "a", "b", 3),
(2, None, "f", None),
(3, "g", "h", 4),
(4, None, "f", None),
(5, "a", "b", 3)
]).toDF(["id"])
query:
(df
.groupBy(df.columns[1:])
.agg(collect_list("id").alias("ids"))
.where(size("ids") > 1))
and the result:
+----+---+----+------+
| _2| _3| _4| ids|
+----+---+----+------+
|null| f|null|[2, 4]|
| a| b| 3|[1, 5]|
+----+---+----+------+
You can apply explode twice (or use an udf) to an output equivalent to the one returned from join.
You can also identify groups using minimal id per group. A few additional imports:
from pyspark.sql.window import Window
from pyspark.sql.functions import col, count, min
window definition:
w = Window.partitionBy(df.columns[1:])
query:
(df
.select(
"*",
count("*").over(w).alias("_cnt"),
min("id").over(w).alias("group"))
.where(col("_cnt") > 1))
and the result:
+---+----+---+----+----+-----+
| id| _2| _3| _4|_cnt|group|
+---+----+---+----+----+-----+
| 2|null| f|null| 2| 2|
| 4|null| f|null| 2| 2|
| 1| a| b| 3| 2| 1|
| 5| a| b| 3| 2| 1|
+---+----+---+----+----+-----+
You can further use group column for self join.

Split Spark dataframe string column into multiple columns

I've seen various people suggesting that Dataframe.explode is a useful way to do this, but it results in more rows than the original dataframe, which isn't what I want at all. I simply want to do the Dataframe equivalent of the very simple:
rdd.map(lambda row: row + [row.my_str_col.split('-')])
which takes something looking like:
col1 | my_str_col
-----+-----------
18 | 856-yygrm
201 | 777-psgdg
and converts it to this:
col1 | my_str_col | _col3 | _col4
-----+------------+-------+------
18 | 856-yygrm | 856 | yygrm
201 | 777-psgdg | 777 | psgdg
I am aware of pyspark.sql.functions.split(), but it results in a nested array column instead of two top-level columns like I want.
Ideally, I want these new columns to be named as well.
pyspark.sql.functions.split() is the right approach here - you simply need to flatten the nested ArrayType column into multiple top-level columns. In this case, where each array only contains 2 items, it's very easy. You simply use Column.getItem() to retrieve each part of the array as a column itself:
split_col = pyspark.sql.functions.split(df['my_str_col'], '-')
df = df.withColumn('NAME1', split_col.getItem(0))
df = df.withColumn('NAME2', split_col.getItem(1))
The result will be:
col1 | my_str_col | NAME1 | NAME2
-----+------------+-------+------
18 | 856-yygrm | 856 | yygrm
201 | 777-psgdg | 777 | psgdg
I am not sure how I would solve this in a general case where the nested arrays were not the same size from Row to Row.
Here's a solution to the general case that doesn't involve needing to know the length of the array ahead of time, using collect, or using udfs. Unfortunately this only works for spark version 2.1 and above, because it requires the posexplode function.
Suppose you had the following DataFrame:
df = spark.createDataFrame(
[
[1, 'A, B, C, D'],
[2, 'E, F, G'],
[3, 'H, I'],
[4, 'J']
]
, ["num", "letters"]
)
df.show()
#+---+----------+
#|num| letters|
#+---+----------+
#| 1|A, B, C, D|
#| 2| E, F, G|
#| 3| H, I|
#| 4| J|
#+---+----------+
Split the letters column and then use posexplode to explode the resultant array along with the position in the array. Next use pyspark.sql.functions.expr to grab the element at index pos in this array.
import pyspark.sql.functions as f
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.show()
#+---+------------+---+---+
#|num| letters|pos|val|
#+---+------------+---+---+
#| 1|[A, B, C, D]| 0| A|
#| 1|[A, B, C, D]| 1| B|
#| 1|[A, B, C, D]| 2| C|
#| 1|[A, B, C, D]| 3| D|
#| 2| [E, F, G]| 0| E|
#| 2| [E, F, G]| 1| F|
#| 2| [E, F, G]| 2| G|
#| 3| [H, I]| 0| H|
#| 3| [H, I]| 1| I|
#| 4| [J]| 0| J|
#+---+------------+---+---+
Now we create two new columns from this result. First one is the name of our new column, which will be a concatenation of letter and the index in the array. The second column will be the value at the corresponding index in the array. We get the latter by exploiting the functionality of pyspark.sql.functions.expr which allows us use column values as parameters.
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.drop("val")\
.select(
"num",
f.concat(f.lit("letter"),f.col("pos").cast("string")).alias("name"),
f.expr("letters[pos]").alias("val")
)\
.show()
#+---+-------+---+
#|num| name|val|
#+---+-------+---+
#| 1|letter0| A|
#| 1|letter1| B|
#| 1|letter2| C|
#| 1|letter3| D|
#| 2|letter0| E|
#| 2|letter1| F|
#| 2|letter2| G|
#| 3|letter0| H|
#| 3|letter1| I|
#| 4|letter0| J|
#+---+-------+---+
Now we can just groupBy the num and pivot the DataFrame. Putting that all together, we get:
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.drop("val")\
.select(
"num",
f.concat(f.lit("letter"),f.col("pos").cast("string")).alias("name"),
f.expr("letters[pos]").alias("val")
)\
.groupBy("num").pivot("name").agg(f.first("val"))\
.show()
#+---+-------+-------+-------+-------+
#|num|letter0|letter1|letter2|letter3|
#+---+-------+-------+-------+-------+
#| 1| A| B| C| D|
#| 3| H| I| null| null|
#| 2| E| F| G| null|
#| 4| J| null| null| null|
#+---+-------+-------+-------+-------+
Here's another approach, in case you want split a string with a delimiter.
import pyspark.sql.functions as f
df = spark.createDataFrame([("1:a:2001",),("2:b:2002",),("3:c:2003",)],["value"])
df.show()
+--------+
| value|
+--------+
|1:a:2001|
|2:b:2002|
|3:c:2003|
+--------+
df_split = df.select(f.split(df.value,":")).rdd.flatMap(
lambda x: x).toDF(schema=["col1","col2","col3"])
df_split.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| a|2001|
| 2| b|2002|
| 3| c|2003|
+----+----+----+
I don't think this transition back and forth to RDDs is going to slow you down...
Also don't worry about last schema specification: it's optional, you can avoid it generalizing the solution to data with unknown column size.
I understand your pain. Using split() can work, but can also lead to breaks.
Let's take your df and make a slight change to it:
df = spark.createDataFrame([('1:"a:3":2001',),('2:"b":2002',),('3:"c":2003',)],["value"])
df.show()
+------------+
| value|
+------------+
|1:"a:3":2001|
| 2:"b":2002|
| 3:"c":2003|
+------------+
If you try to apply split() to this as outlined above:
df_split = df.select(split(df.value,":")).rdd.flatMap(
lambda x: x).toDF(schema=["col1","col2","col3"]).show()
you will get
IllegalStateException: Input row doesn't have expected number of values required by the schema. 4 fields are required while 3 values are provided.
So, is there a more elegant way of addressing this? I was so happy to have it pointed out to me. pyspark.sql.functions.from_csv() is your friend.
Taking my above example df:
from pyspark.sql.functions import from_csv
# Define a column schema to apply with from_csv()
col_schema = ["col1 INTEGER","col2 STRING","col3 INTEGER"]
schema_str = ",".join(col_schema)
# define the separator because it isn't a ','
options = {'sep': ":"}
# create a df from the value column using schema and options
df_csv = df.select(from_csv(df.value, schema_str, options).alias("value_parsed"))
df_csv.show()
+--------------+
| value_parsed|
+--------------+
|[1, a:3, 2001]|
| [2, b, 2002]|
| [3, c, 2003]|
+--------------+
Then we can easily flatten the df to put the values in columns:
df2 = df_csv.select("value_parsed.*").toDF("col1","col2","col3")
df2.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| a:3|2001|
| 2| b|2002|
| 3| c|2003|
+----+----+----+
No breaks. Data correctly parsed. Life is good. Have a beer.
Instead of Column.getItem(i) we can use Column[i].
Also, enumerate is useful in big dataframes.
from pyspark.sql import functions as F
Keep parent column:
for i, c in enumerate(['new_1', 'new_2']):
df = df.withColumn(c, F.split('my_str_col', '-')[i])
or
new_cols = ['new_1', 'new_2']
df = df.select('*', *[F.split('my_str_col', '-')[i].alias(c) for i, c in enumerate(new_cols)])
Replace parent column:
for i, c in enumerate(['new_1', 'new_2']):
df = df.withColumn(c, F.split('my_str_col', '-')[i])
df = df.drop('my_str_col')
or
new_cols = ['new_1', 'new_2']
df = df.select(
*[c for c in df.columns if c != 'my_str_col'],
*[F.split('my_str_col', '-')[i].alias(c) for i, c in enumerate(new_cols)]
)

Resources