Let x be a vector and M a matrix.
In R, I can do
D <- diag(exp(x))
crossprod(M, D%M)
and in RcppArmadillo, I have the following which is much slower.
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
arma::mat multiple_mnv(const arma::vec& x, const arma::mat& M) {
arma::colvec diagonal(x.size())
for (int i = 0; i < x.size(); i++)
{
diagonal(i) = exp(x[i]);
}
arma::mat D = diagmat(diagonal);
return M.t()*D*M;
}
Why is this so slow? How can I speed this up?
Welcome to Stack Overflow manju. For future questions, please be advised that a minimal reproducible example is expected, and in fact is in your best interest to provide; it helps others help you. Here's an example of how you could provide example data for others to work with:
## Set seed for reproducibility
set.seed(123)
## Generate data
x <- rnorm(10)
M <- matrix(rnorm(100), nrow = 10, ncol = 10)
## Output code for others to copy your objects
dput(x)
dput(M)
This is the data I will work with to show that your C++ code is in fact not slower than R. I used your C++ code (adding in a missing semicolon):
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
arma::mat foo(const arma::vec& x, const arma::mat& M) {
arma::colvec diagonal(x.size());
for ( int i = 0; i < x.size(); i++ )
{
diagonal(i) = exp(x[i]);
}
arma::mat D = diagmat(diagonal);
return M.t() * D * M;
}
Note also that I had to make some of my own choices about the type of the return object and types of the function arguments (this is one of the places where a minimal reproducible example could help you: What if these choices affect my results?) I then create an R function to do what foo() does:
bar <- function(v, M) {
D <- diag(exp(v))
return(crossprod(M, D %*% M))
}
Note also that I had to fix a typo you had, changing D%M to D %*% M. Let's double check they give the same results:
all.equal(foo(x, M), bar(x, M))
# [1] TRUE
Now let's explore how fast they are:
library(microbenchmark)
bench <- microbenchmark(cpp = foo(x, M), R = foo(x, M), times = 1e5)
bench
# Unit: microseconds
# expr min lq mean median uq max
# cpp 22.185 23.015 27.00436 23.204 23.461 31143.30
# R 22.126 23.028 25.48256 23.216 23.475 29628.86
Those look pretty much the same to me! We can also look at a density plot of the times (throwing out the extreme value outliers to make things a little clearer):
cpp_times <- with(bench, time[expr == "cpp"])
R_times <- with(bench, time[expr == "R"])
cpp_time_dens <- density(cpp_times[cpp_times < quantile(cpp_times, 0.95)])
R_time_dens <- density(R_times[R_times < quantile(R_times, 0.95)])
plot(cpp_time_dens, col = "blue", xlab = "Time (in nanoseconds)", ylab = "",
main = "Comparing C++ and R execution time")
lines(R_time_dens, col = "red")
legend("topright", col = c("blue", "red"), bty = "n", lty = 1,
legend = c("C++ function (foo)", "R function (bar)"))
Why?
As helpfully pointed out by Dirk Eddelbuettel in the comments, in the end both R and Armadillo are going to be calling a LAPACK or BLAS routine anyways -- you shouldn't expect much difference unless you can give Armadillo a hint on how to be more efficient.
Can we make the Armadillo code faster?
Yes! As pointed out by mtall in the comments, we can give Armadillo the hint that we're dealing with a diagonal matrix. Let's try; we'll use the following code:
// [[Rcpp::export]]
arma::mat baz(const arma::vec& x, const arma::mat& M) {
return M.t() * diagmat(arma::exp(x)) * M;
}
And benchmark it:
all.equal(foo(x, M), baz(x, M))
# [1] TRUE
library(microbenchmark)
bench <- microbenchmark(cpp = foo(x, M), R = foo(x, M),
cpp2 = baz(x, M), times = 1e5)
bench
# Unit: microseconds
# expr min lq mean median uq max
# cpp 22.822 23.757 27.57015 24.118 24.632 26600.48
# R 22.855 23.771 26.44725 24.124 24.638 30619.09
# cpp2 20.035 21.218 25.49863 21.587 22.123 36745.72
We see a small but sure improvement; let's take a look graphically as we did before:
cpp_times <- with(bench, time[expr == "cpp"])
cpp2_times <- with(bench, time[expr == "cpp2"])
R_times <- with(bench, time[expr == "R"])
cpp_time_dens <- density(cpp_times[cpp_times < quantile(cpp_times, 0.95)])
cpp2_time_dens <- density(cpp2_times[cpp2_times < quantile(cpp2_times, 0.95)])
R_time_dens <- density(R_times[R_times < quantile(R_times, 0.95)])
xlims <- range(c(cpp_time_dens$x, cpp2_time_dens$x, R_time_dens$x))
ylims <- range(c(cpp_time_dens$y, cpp2_time_dens$y, R_time_dens$y))
ylims <- ylims * c(1, 1.15)
cols <- c("#0072b2", "#f0e442", "#d55e00")
cols <- c("#e69f00", "#56b4e9", "#009e73")
labs <- c("C++ original", "C++ improved", "R")
plot(cpp_time_dens, col = cols[1], xlim = xlims, ylim = ylims,
xlab = "Time (in nanoseconds)", ylab = "",
main = "Comparing C++ and R execution time")
lines(cpp2_time_dens, col = cols[2])
lines(R_time_dens, col = cols[3])
legend("topleft", col = cols, bty = "n", lty = 1, legend = labs, horiz = TRUE)
Related
I have been experimenting with the RcppArrayFire Package, mostly rewriting some cost functions from RcppArmadillo and can't seem to get over "no viable conversion from 'af::array' to 'float'. I have also been getting some backend errors, the example below seems free of these.
This cov-var example is written poorly just to use all relevant coding pieces from my actual cost function. As of now it is the only addition in a package generated by, "RcppArrayFire.package.skeleton".
#include "RcppArrayFire.h"
#include <Rcpp.h>
// [[Rcpp::depends(RcppArrayFire)]]
// [[Rcpp::export]]
float example_ols(const RcppArrayFire::typed_array<f32>& X_vect, const RcppArrayFire::typed_array<f32>& Y_vect){
int Len = X_vect.dims()[0];
int Len_Y = Y_vect.dims()[0];
while( Len_Y < Len){
Len --;
}
float mean_X = af::sum(X_vect)/Len;
float mean_Y = af::sum(Y_vect)/Len;
RcppArrayFire::typed_array<f32> temp(Len);
RcppArrayFire::typed_array<f32> temp_x(Len);
for( int f = 0; f < Len; f++){
temp(f) = (X_vect(f) - mean_X)*(Y_vect(f) - mean_Y);
temp_x(f) = af::pow(X_vect(f) -mean_X, 2);
}
return af::sum(temp)/af::sum(temp_x);
}
/*** R
X <- 1:10
Y <- 2*X +rnorm(10, mean = 0, sd = 1)
example_ols(X, Y)
*/
The first thing to consider is the af::sum function, which comes in different forms: An sf::sum(af::array) that returns an af::array in device memory and a templated af::sum<T>(af::array) that returns a T in host memory. So the minimal change to your example would be using af::sum<float>:
#include "RcppArrayFire.h"
#include <Rcpp.h>
// [[Rcpp::depends(RcppArrayFire)]]
// [[Rcpp::export]]
float example_ols(const RcppArrayFire::typed_array<f32>& X_vect,
const RcppArrayFire::typed_array<f32>& Y_vect){
int Len = X_vect.dims()[0];
int Len_Y = Y_vect.dims()[0];
while( Len_Y < Len){
Len --;
}
float mean_X = af::sum<float>(X_vect)/Len;
float mean_Y = af::sum<float>(Y_vect)/Len;
RcppArrayFire::typed_array<f32> temp(Len);
RcppArrayFire::typed_array<f32> temp_x(Len);
for( int f = 0; f < Len; f++){
temp(f) = (X_vect(f) - mean_X)*(Y_vect(f) - mean_Y);
temp_x(f) = af::pow(X_vect(f) -mean_X, 2);
}
return af::sum<float>(temp)/af::sum<float>(temp_x);
}
/*** R
set.seed(1)
X <- 1:10
Y <- 2*X +rnorm(10, mean = 0, sd = 1)
example_ols(X, Y)
*/
However, there are more things one can improve. In no particular order:
You don't need to include Rcpp.h.
There is an af::mean function for computing the mean of an af::array.
In general RcppArrayFire::typed_array<T> is only needed for getting arrays from R into C++. Within C++ and for the way back you can use af::array.
Even when your device does not support double, you can still use double values on the host.
In order to get good performance, you should avoid for loops and use vectorized functions, just like in R. You have to impose equal dimensions for X and Y, though.
Interestingly I get a different result when I use vectorized functions. Right now I am not sure why this is the case, but the following form makes more sense to me. You should verify that the result is what you want to get:
#include <RcppArrayFire.h>
// [[Rcpp::depends(RcppArrayFire)]]
// [[Rcpp::export]]
double example_ols(const RcppArrayFire::typed_array<f32>& X_vect,
const RcppArrayFire::typed_array<f32>& Y_vect){
double mean_X = af::mean<double>(X_vect);
double mean_Y = af::mean<double>(Y_vect);
af::array temp = (X_vect - mean_X) * (Y_vect - mean_Y);
af::array temp_x = af::pow(X_vect - mean_X, 2.0);
return af::sum<double>(temp)/af::sum<double>(temp_x);
}
/*** R
set.seed(1)
X <- 1:10
Y <- 2*X +rnorm(10, mean = 0, sd = 1)
example_ols(X, Y)
*/
BTW, an even shorter version would be:
#include <RcppArrayFire.h>
// [[Rcpp::depends(RcppArrayFire)]]
// [[Rcpp::export]]
af::array example_ols(const RcppArrayFire::typed_array<f32>& X_vect,
const RcppArrayFire::typed_array<f32>& Y_vect){
return af::cov(X_vect, Y_vect) / af::var(X_vect);
}
Generally it is a good idea to use the in-build functions as much as possible.
I have a list of Numeric Vector and I need a List of unique elements. I tried Rcpp:unique fonction. It works very well when apply to a Numeric Vector but not to List. This is the code and the error I got.
List h(List x){
return Rcpp::unique(x);
}
Error in dyn.load("/tmp/RtmpDdKvcH/sourceCpp-x86_64-pc-linux-gnu-1.0.0/sourcecpp_272635d5289/sourceCpp_10.so") :
unable to load shared object '/tmp/RtmpDdKvcH/sourceCpp-x86_64-pc-linux-gnu-1.0.0/sourcecpp_272635d5289/sourceCpp_10.so':
/tmp/RtmpDdKvcH/sourceCpp-x86_64-pc-linux-gnu-1.0.0/sourcecpp_272635d5289/sourceCpp_10.so: undefined symbol: _ZNK4Rcpp5sugar9IndexHashILi19EE8get_addrEP7SEXPREC
It is unclear what you are doing wrong, and it is an incomplete / irreproducible question.
But there is a unit test that does just what you do, and we can do it by hand too:
R> Rcpp::cppFunction("NumericVector uq(NumericVector x) { return Rcpp::unique(x); }")
R> uq(c(1.1, 2.2, 2.2, 3.3, 27))
[1] 27.0 1.1 3.3 2.2
R>
Even if there isn't a matching Rcpp sugar function, you can call R functions from within C++. Example:
#include <Rcpp.h>
using namespace Rcpp;
Rcpp::Environment base("package:base");
Function do_unique = base["unique"];
// [[Rcpp::export]]
List myfunc(List x) {
return do_unique(x);
}
Thank you for being interested to this issue.
As I notified that, my List contains only NumericVector. I propose this code that works very well and faster than unique function in R. However its efficiency decreases when the list is large. Maybe this can help someone. Moreover, someone can also optimise this code.
List uniqueList(List& x) {
int xsize = x.size();
List xunique(x);
int s = 1;
for(int i(1); i<xsize; ++i){
NumericVector xi = x[i];
int l = 0;
for(int j(0); j<s; ++j){
NumericVector xj = x[j];
int xisize = xi.size();
int xjsize = xj.size();
if(xisize != xjsize){
++l;
}
else{
if((sum(xi == xj) == xisize)){
goto notkeep;
}
else{
++l;
}
}
}
if(l == s){
xunique[s] = xi;
++s;
}
notkeep: 0;
}
return head(xunique, s);
}
/***R
x <- list(1,42, 1, 1:3, 42)
uniqueList(x)
[[1]]
[1] 1
[[2]]
[1] 42
[[3]]
[1] 1 2 3
microbenchmark::microbenchmark(uniqueList(x), unique(x))
Unit: microseconds
expr min lq mean median uq max neval
uniqueList(x) 2.382 2.633 3.05103 2.720 2.8995 29.307 100
unique(x) 2.864 3.110 3.50900 3.254 3.4145 24.039 100
But R function becomes faster when the List is large. I am sure that someone can optimise this code.
It seems that the sugar Rcpp function setdiff orders the values, which is different from the standard R function setdiff.
As an example, consider the following code:
src <-
"IntegerVector setdiff_Rcpp(IntegerVector x, IntegerVector y){
IntegerVector d = setdiff(x,y);
return(d);
}"
Rcpp::cppFunction(src)
setdiff(15:11, c(13,12))
# [1] 15 14 11
setdiff_Rcpp(15:11, c(13,12))
# [1] 11 14 15
Is it possible to obtain a result as in the standard R function?
[Edit]
I was able to solve my problem. Here is the Rcpp function I used:
// [[Rcpp::export]]
IntegerVector setdiff_R(IntegerVector x, IntegerVector y)
{
// difference of sets x & y (without reordering)
x = x[duplicated(x) == 0]; x = na_omit(x);
y = y[duplicated(y) == 0]; y = na_omit(y);
IntegerVector out(0, NA_INTEGER);
for(int i=0; i < x.length(); i++)
{
if(is_false(any(x[i] == y)))
out.push_back(x[i]);
}
return(out);
}
It only works for IntegerVector type and probably it is not optimised but it gets the job done.
I have been fiddling with the following C++ code for integration with R code that I have written (too much to include here), but keep getting an error that the Cube::operator() index is out of bounds and I am unsure as to why this is occurring. My suspicion is that the 3D array is not being filled correctly as described in
making 3d array with arma::cube in Rcpp shows cube error
but I am uncertain how to properly solve the issue.
Below is my full C++ code:
// [[Rcpp::depends(RcppArmadillo)]]
#define ARMA_DONT_PRINT_OPENMP_WARNING
#include <RcppArmadillo.h>
#include <RcppArmadilloExtensions/sample.h>
#include <set>
using namespace Rcpp;
int sample_one(int n) {
return n * unif_rand();
}
int sample_n_distinct(const IntegerVector& x,
int k,
const int * pop_ptr) {
IntegerVector ind_index = RcppArmadillo::sample(x, k, false);
std::set<int> distinct_container;
for (int i = 0; i < k; i++) {
distinct_container.insert(pop_ptr[ind_index[i]]);
}
return distinct_container.size();
}
// [[Rcpp::export]]
arma::Cube<int> fillCube(const arma::Cube<int>& pop,
const IntegerVector& specs,
int perms,
int K) {
int num_specs = specs.size();
arma::Cube<int> res(perms, num_specs, K);
IntegerVector specs_C = specs - 1;
const int * pop_ptr;
int i, j, k;
for (i = 0; i < K; i++) {
for (k = 0; k < num_specs; k++) {
for (j = 0; j < perms; j++) {
pop_ptr = &(pop(0, sample_one(perms), sample_one(K)));
res(j, k, i) = sample_n_distinct(specs_C, k + 1, pop_ptr);
}
}
}
return res;
}
Does someone have an idea as to what may be producing the said error?
Below is the R code with a call to the C++ function (including a commented-out triply-nested 'for' loop that the C++ code reproduces).
## Set up container(s) to hold the identity of each individual from each permutation ##
num.specs <- ceiling(N / K)
## Create an ID for each haplotype ##
haps <- 1:Hstar
## Assign individuals (N) to each subpopulation (K) ##
specs <- 1:num.specs
## Generate permutations, assume each permutation has N individuals, and sample those individuals' haplotypes from the probabilities ##
gen.perms <- function() {
sample(haps, size = num.specs, replace = TRUE, prob = probs)
}
pop <- array(dim = c(perms, num.specs, K))
for (i in 1:K) {
pop[,, i] <- replicate(perms, gen.perms())
}
## Make a matrix to hold individuals from each permutation ##
# HAC.mat <- array(dim = c(perms, num.specs, K))
## Perform haplotype accumulation ##
# for (k in specs) {
# for (j in 1:perms) {
# for (i in 1:K) {
# select.perm <- sample(1:nrow(pop), size = 1, replace = TRUE) # randomly sample a permutation
# ind.index <- sample(specs, size = k, replace = FALSE) # randomly sample individuals
# select.subpop <- sample(i, size = 1, replace = TRUE) # randomly sample a subpopulation
# hap.plot <- pop[select.perm, ind.index, select.subpop] # extract data
# HAC.mat[j, k, i] <- length(unique(hap.plot)) # how many haplotypes are recovered
# }
# }
# }
HAC.mat <- fillCube(pop, specs, perms, K)
This is an out-of-bounds error. The gist of problem is the call
pop_ptr = &(pop(0, sample_one(perms), sample_one(K)));
since
sample_one(perms)
is being placed as an access index where the max length is num_specs. This is seen by how res is defined:
arma::Cube<int> res(perms, num_specs, K);
Thus, moving out perms out of num_specs place should resolve the issue.
// [[Rcpp::export]]
arma::Cube<int> fillCube(const arma::Cube<int>& pop,
const IntegerVector& specs,
int perms,
int K) {
int num_specs = specs.size();
arma::Cube<int> res(perms, num_specs, K);
IntegerVector specs_C = specs - 1;
const int * pop_ptr;
int i, j, k;
for (i = 0; i < K; i++) {
for (k = 0; k < num_specs; k++) {
for (j = 0; j < perms; j++) {
// swapped location
pop_ptr = &(pop(sample_one(perms), 0, sample_one(K)));
// should the middle index be 0?
res(j, k, i) = sample_n_distinct(specs_C, k + 1, pop_ptr);
}
}
}
return res;
}
I am trying to implement a Weibull proportional hazards model with a cure fraction following the approach outlined by Hui, Ibrahim and Sinha (1999) - A New Bayesian Model for Survival Data with a Surviving Fraction. However, I am not sure if it is possible to define a random limit for a looping in JAGS.
library(R2OpenBUGS)
library(rjags)
set.seed(1234)
censored <- c(1, 1)
time_mod <- c(NA, NA)
time_cens <- c(5, 7)
tau <- 4
design_matrix <- rbind(c(1, 0, 0, 0), c(1, 0.2, 0.2, 0.04))
jfun <- function() {
for(i in 1:nobs) {
censored[i] ~ dinterval(time_mod[i], time_cens[i])
time_mod[i] <- ifelse(N[i] == 0, tau, min(Z))
for (k in 1:N[i]){
Z[k] ~ dweib(1, 1)
}
N[i] ~ dpois(fc[i])
fc[i] <- exp(inprod(design_matrix[i, ], beta))
}
beta[1] ~ dnorm(0, 10)
beta[2] ~ dnorm(0, 10)
beta[3] ~ dnorm(0, 10)
beta[4] ~ dnorm(0, 10)
}
inits <- function() {
time_init <- rep(NA, length(time_mod))
time_init[which(!status)] <- time_cens[which(!status)] + 1
out <- list(beta = rnorm(4, 0, 10),
time_mod = time_init,
N = rpois(length(time_mod), 5))
return(out)
}
data_base <- list('time_mod' = time_mod, 'time_cens' = time_cens,
'censored' = censored, 'design_matrix' = design_matrix,
'tau' = tau,
'nobs' = length(time_cens[!is.na(time_cens)]))
tc1 <- textConnection("jmod", "w")
write.model(jfun, tc1)
close(tc1)
# Calling JAGS
tc2 <- textConnection(jmod)
j <- jags.model(tc2,
data = data_base,
inits = inits(),
n.chains = 1,
n.adapt = 1000)
I observed the below error:
Error in jags.model(tc2, data = data_base, inits = inits(), n.chains = 1, :
RUNTIME ERROR:
Compilation error on line 6.
Unknown variable N
Either supply values for this variable with the data
or define it on the left hand side of a relation.
I am not entirely certain, but I am pretty sure that you cannot declare a random number of nodes in BUGS in general, so it would not be a specific JAGS' quirk.
Nevertheless, you can get a way around that.
Since BUGS is a declarative language instead of a procedural one, it is enough to declare an arbitrary but deterministic number of nodes (let's say "large enough") and then associate only a random number of them with a distribution and with observed data, leaving the remaining nodes deterministic.
Once you have observed the maximum value of N[i] (let's say N.max), you can pass it as a parameter to JAGS and then change this code of yours:
for (k in 1:N[i]){
Z[k] ~ dweib(1, 1)
}
into this:
for (k in 1:N.max){
if (k <= N[i]){
Z[k] ~ dweib(1, 1)
} else {
Z[k] <- 0
}
}
I hope this will do the trick in your case. So please give feedback latter about it.
Needless to say, if you have some non-zero, observed data associated to a deterministic Z[k], then all hell breaks loose inside Jags...