Databricks Spark: java.lang.OutOfMemoryError: GC overhead limit exceeded i - apache-spark

I am executing a Spark job in Databricks cluster. I am triggering the job via a Azure Data Factory pipeline and it execute at 15 minute interval so after the successful execution of three or four times it is getting failed and throwing with the exception "java.lang.OutOfMemoryError: GC overhead limit exceeded".
Though there are many answer with for the above said question but in most of the cases their jobs are not running but in my cases it is getting failed after successful execution of some previous jobs.
My data size is less than 20 MB only.
My cluster configuration is:
So the my question is what changes I should make in the server configuration. If the issue is coming from my code then why it is getting succeeded most of the time. Please advise and suggest me the solution.

This is most probably related to executor memory being bit low .Not sure what is current setting and if its default what is the default value in this particular databrics distribution. Even though it passes but there would lot of GCs happening because of low memory hence it would keep failing once in a while . Under spark configuration please provide spark.executor.memory and also some other params related to num of executors and cores per executor . In spark-submit the config would be provided as spark-submit --conf spark.executor.memory=1g

You may try increasing memory of driver node.

Sometimes the Garbage Collector is not releasing all the loaded objects in the driver's memory.
What you can try is to force the GC to do that. You can do that by executing the following:
spark.catalog.clearCache()
for (id, rdd) in spark.sparkContext._jsc.getPersistentRDDs().items():
rdd.unpersist()
print("Unpersisted {} rdd".format(id))

Related

OOM error - unable to acquire 261244 bytes of memory, got 0

I am trying to run spark job which is both data and processing intensive job on dataproc and getting OOM with below error
‘OOM error - unable to acquire 261244 bytes of memory, got 0’
To give overview - On collect action, job is shuffling TBs of data. Roughly ~6TB
What I know is mentioned error comes when executor runs out of memory but when I am increasing executor memory then executor per node is decreasing resulting in less vcores causing job to run slow.
Can anyone please help me with above error. I have tried everything which is being suggested on stackoverflow.
Dataproc configuration
I am using highmem-16 dataproc machine.
Code cant be shared as it is massive code with lot of transformations and this is first action on data.

AWS Glue not using all executors

I am using some AWS glue to perform some ETL operations. My program writes a computed dataframe to S3. When I look at the metrics, i find that not all my executors are being used, infact just one is being used.
How do I make sure all my allocated executors are being busy ?
Thanks.
I do not use gluecontext in my program just native sparkcontext
Not using gluecontext could be one of the reason for one executor being used.
https://docs.aws.amazon.com/glue/latest/dg/monitor-profile-debug-straggler.html
Especially read Memory Profile section:
After the first two stages, only executor number 3 is actively
consuming memory to process the data. The remaining executors are
simply idle or have been relinquished shortly after the completion of
the first two stages.
I found that my job was not using all the executors, despite having a lot of data to process. The problem was in the set up on my SparkContext. I was using SparkContext.setMaster("local[*]"), which I believe makes the job run on only one executor (driver). If that helps your problem or anyone else facing the same issue.

Spark Memory Usage Concentrated on Driver / Master

I'm currently developing a Spark (v 2.2.0) Streaming application and am running into issues with the way Spark seems to be allocating work across the cluster. This application is submitted to AWS EMR using client mode, so there is a driver node and a couple of worker nodes. Here is a screenshot of Ganglia that shows memory usage in the last hour:
The left-most node is the "master" or "driver" node, and the other two are worker nodes. There are spikes in the memory usage for all three nodes that correspond to workloads coming in through the stream, but the spikes are not equal (even when scaled to % memory usage). When a large workload comes in, the driver node appears to be overworked, and the job will crash with an error regarding memory:
OpenJDK 64-Bit Server VM warning: INFO: os::commit_memory(0x000000053e980000, 674234368, 0) failed; error='Cannot allocate memory' (errno=12)
I've also run into this:
Exception in thread "streaming-job-executor-10" java.lang.OutOfMemoryError: Java heap space when the master runs out of memory, which is equally confusing, as my understanding is that "client" mode would not use the driver / master node as an executor.
Pertinent details:
As mentioned earlier, this application is submitted in client mode: spark-submit --deploy-mode client --master yarn ....
Nowhere in the program am I running collect or coalesce
Any work that I suspect of being run on a single node (jdbc reads mainly) is repartition'd after completion.
There are a couple of very, very small datasets persist into memory.
1 x Driver specs: 4 cores, 16GB RAM (m4.xlarge instance)
2 x Worker specs: 4 cores, 30.5GB RAM (r3.xlarge instance)
I have tried both allowing Spark to choose executor size / cores and specifying them manually. Both cases behave the same. (I manually specified 6 executors, 1 core, 9GB RAM)
I'm certainly at a loss here. I'm not sure what is going on in the code to be triggering the driver to hog the workload like this.
The only suspect I can think of is a code snippet similar to the following:
val scoringAlgorithm = HelperFunctions.scoring(_: Row, batchTime)
val rawScored = dataToScore.map(scoringAlgorithm)
Here, a function is being loaded from a static object, and used to map over the Dataset. It is my understanding that Spark will serialize this function across the cluster (re: http://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#passing-functions-to-spark). However perhaps I am mistaken and it is simply running this transformation on the driver.
If anyone has any insight to this issue, I would love to hear it!
I ended up solving this issue. Here's how I addressed it:
I made an incorrect assertion in stating the problem: there was a collect statement at the beginning of the Spark program.
I had a transaction that required collect() to run as it was designed. My assumption was that calling repartition(n) on the resulting data would split the data back amongst the executors in the cluster. From what I can tell, this strategy does not work. Once I re-wrote this line, Spark started behaving as I expected and farming jobs out to worker nodes.
My advice to any lost soul who stumbles across this issue: don't collect unless it's the end of your Spark program. You can not recover from it. Find another way to perform your task. (I ended up switching a SQL transaction from where col in (,,,) syntax to a join on the database.)

"Container killed by YARN for exceeding memory limits. 10.4 GB of 10.4 GB physical memory used" on an EMR cluster with 75GB of memory

I'm running a 5 node Spark cluster on AWS EMR each sized m3.xlarge (1 master 4 slaves). I successfully ran through a 146Mb bzip2 compressed CSV file and ended up with a perfectly aggregated result.
Now I'm trying to process a ~5GB bzip2 CSV file on this cluster but I'm receiving this error:
16/11/23 17:29:53 WARN TaskSetManager: Lost task 49.2 in stage 6.0 (TID xxx, xxx.xxx.xxx.compute.internal): ExecutorLostFailure (executor 16 exited caused by one of the running tasks) Reason: Container killed by YARN for exceeding memory limits. 10.4 GB of 10.4 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.
I'm confused as to why I'm getting a ~10.5GB memory limit on a ~75GB cluster (15GB per 3m.xlarge instance)...
Here is my EMR config:
[
{
"classification":"spark-env",
"properties":{
},
"configurations":[
{
"classification":"export",
"properties":{
"PYSPARK_PYTHON":"python34"
},
"configurations":[
]
}
]
},
{
"classification":"spark",
"properties":{
"maximizeResourceAllocation":"true"
},
"configurations":[
]
}
]
From what I've read, setting the maximizeResourceAllocation property should tell EMR to configure Spark to fully utilize all resources available on the cluster. Ie, I should have ~75GB of memory available... So why am I getting a ~10.5GB memory limit error?
Here is the code I'm running:
def sessionize(raw_data, timeout):
# https://www.dataiku.com/learn/guide/code/reshaping_data/sessionization.html
window = (pyspark.sql.Window.partitionBy("user_id", "site_id")
.orderBy("timestamp"))
diff = (pyspark.sql.functions.lag(raw_data.timestamp, 1)
.over(window))
time_diff = (raw_data.withColumn("time_diff", raw_data.timestamp - diff)
.withColumn("new_session", pyspark.sql.functions.when(pyspark.sql.functions.col("time_diff") >= timeout.seconds, 1).otherwise(0)))
window = (pyspark.sql.Window.partitionBy("user_id", "site_id")
.orderBy("timestamp")
.rowsBetween(-1, 0))
sessions = (time_diff.withColumn("session_id", pyspark.sql.functions.concat_ws("_", "user_id", "site_id", pyspark.sql.functions.sum("new_session").over(window))))
return sessions
def aggregate_sessions(sessions):
median = pyspark.sql.functions.udf(lambda x: statistics.median(x))
aggregated = sessions.groupBy(pyspark.sql.functions.col("session_id")).agg(
pyspark.sql.functions.first("site_id").alias("site_id"),
pyspark.sql.functions.first("user_id").alias("user_id"),
pyspark.sql.functions.count("id").alias("hits"),
pyspark.sql.functions.min("timestamp").alias("start"),
pyspark.sql.functions.max("timestamp").alias("finish"),
median(pyspark.sql.functions.collect_list("foo")).alias("foo"),
)
return aggregated
spark_context = pyspark.SparkContext(appName="process-raw-data")
spark_session = pyspark.sql.SparkSession(spark_context)
raw_data = spark_session.read.csv(sys.argv[1],
header=True,
inferSchema=True)
# Windowing doesn't seem to play nicely with TimestampTypes.
#
# Should be able to do this within the ``spark.read.csv`` call, I'd
# think. Need to look into it.
convert_to_unix = pyspark.sql.functions.udf(lambda s: arrow.get(s).timestamp)
raw_data = raw_data.withColumn("timestamp",
convert_to_unix(pyspark.sql.functions.col("timestamp")))
sessions = sessionize(raw_data, SESSION_TIMEOUT)
aggregated = aggregate_sessions(sessions)
aggregated.foreach(save_session)
Basically, nothing more than windowing and a groupBy to aggregate the data.
It starts with a few of those errors, and towards halting increases in the amount of the same error.
I've tried running spark-submit with --conf spark.yarn.executor.memoryOverhead but that doesn't seem to solve the problem either.
I feel your pain..
We had similar issues of running out of memory with Spark on YARN. We have five 64GB, 16 core VMs and regardless of what we set spark.yarn.executor.memoryOverhead to, we just couldn't get enough memory for these tasks -- they would eventually die no matter how much memory we would give them. And this as a relatively straight-forward Spark application that was causing this to happen.
We figured out that the physical memory usage was quite low on the VMs but the virtual memory usage was extremely high (despite the logs complaining about physical memory). We set yarn.nodemanager.vmem-check-enabled in yarn-site.xml to false and our containers were no longer killed, and the application appeared to work as expected.
Doing more research, I found the answer to why this happens here: http://web.archive.org/web/20190806000138/https://mapr.com/blog/best-practices-yarn-resource-management/
Since on Centos/RHEL 6 there are aggressive allocation of virtual memory due to OS behavior, you should disable virtual memory checker or increase yarn.nodemanager.vmem-pmem-ratio to a relatively larger value.
That page had a link to a very useful page from IBM: https://web.archive.org/web/20170703001345/https://www.ibm.com/developerworks/community/blogs/kevgrig/entry/linux_glibc_2_10_rhel_6_malloc_may_show_excessive_virtual_memory_usage?lang=en
In summary, glibc > 2.10 changed its memory allocation. And although huge amounts of virtual memory being allocated isn't the end of the world, it doesn't work with the default settings of YARN.
Instead of setting yarn.nodemanager.vmem-check-enabled to false, you could also play with setting the MALLOC_ARENA_MAX environment variable to a low number in hadoop-env.sh. This bug report has helpful information about that: https://issues.apache.org/jira/browse/HADOOP-7154
I recommend reading through both pages -- the information is very handy.
If you're not using spark-submit, and you're looking for another way to specify the yarn.nodemanager.vmem-check-enabled parameter mentioned by Duff, here are 2 other ways:
Method 2
If you're using a JSON Configuration file (that you pass to the AWS CLI or to your boto3 script), you'll have to add the following configuration:
[{
"Classification": "yarn-site",
"Properties": {
"yarn.nodemanager.vmem-check-enabled": "false"
}
}]
Method 3
If you use the EMR console, add the following configuration:
classification=yarn-site,properties=[yarn.nodemanager.vmem-check-enabled=false]
See,
I had the same problem in a huge cluster that I'm working now. The problem will not be solved to adding memory to the worker. Sometimes in process aggregation spark will use more memory than it has and the spark jobs will start to use off-heap memory.
One simple example is:
If you have a dataset that you need to reduceByKey it will, sometimes, agregate more data in one worker than other, and if this data exeeds the memory of one worker you get that error message.
Adding the option spark.yarn.executor.memoryOverhead will help you if you set for 50% of the memory used for the worker (just for test, and see if it works, you can add less with more tests).
But you need to understand how Spark works with the Memory Allocation in the cluster:
The more common way Spark uses 75% of the machine memory. The rest goes to SO.
Spark has two types of memory during the execution. One part is for execution and the other is the storage. Execution is used for Shuffles, Joins, Aggregations and Etc. The storage is used for caching and propagating data accross the cluster.
One good thing about memory allocation, if you are not using cache in your execution you can set the spark to use that sotorage space to work with execution to avoid in part the OOM error. As you can see this in documentation of spark:
This design ensures several desirable properties. First, applications that do not use caching can use the entire space for execution, obviating unnecessary disk spills. Second, applications that do use caching can reserve a minimum storage space (R) where their data blocks are immune to being evicted. Lastly, this approach provides reasonable out-of-the-box performance for a variety of workloads without requiring user expertise of how memory is divided internally.
But how can we use that?
You can change some configurations, Add the MemoryOverhead configuration to your job call but, consider add this too: spark.memory.fraction change for 0.8 or 0.85 and reduce the spark.memory.storageFraction to 0.35 or 0.2.
Other configurations can help, but it need to check in your case. Se all these configuration here.
Now, what helps in My case.
I have a cluster with 2.5K workers and 2.5TB of RAM. And we were facing OOM error like yours. We just increase the spark.yarn.executor.memoryOverhead to 2048. And we enable the dynamic allocation. And when we call the job, we don't set the memory for the workers, we leave that for the Spark to decide. We just set the Overhead.
But for some tests for my small cluster, changing the size of execution and storage memory. That solved the problem.
Try repartition. It works in my case.
The dataframe was not so big at the very beginning when it was loaded with write.csv(). The data file amounted to be 10 MB or so, as may required say totally several 100 MB memory for each processing task in executor.
I checked the number of partitions to be 2 at the time.
Then it grew like a snowball during the following operations joining with other tables, adding new columns. And then I ran into the memory exceeding limits issue at a certain step.
I checked the number of partitions, it was still 2, derived from the original data frame I guess.
So I tried to repartition it at the very beginning, and there was no problem anymore.
I have not read many materials about Spark and YARN yet. What I do know is that there are executors in nodes. An executor could handle many tasks depending on the resources. My guess is one partition would be atomically mapped to one task. And its volume determines the resource usage. Spark could not slice it if one partition grows too big.
A reasonable strategy is to determine the nodes and container memory first, either 10GB or 5GB. Ideally, both could serve any data processing job, just a matter of time. Given the 5GB memory setting, the reasonable row for one partition you find, say is 1000 after testing (it won't fail any steps during the processing), we could do it as the following pseudo code:
RWS_PER_PARTITION = 1000
input_df = spark.write.csv("file_uri", *other_args)
total_rows = input_df.count()
original_num_partitions = input_df.getNumPartitions()
numPartitions = max(total_rows/RWS_PER_PARTITION, original_num_partitions)
input_df = input_df.repartition(numPartitions)
Hope it helps!
I had the same issue on small cluster running relatively small job on spark 2.3.1.
The job reads parquet file, removes duplicates using groupBy/agg/first then sorts and writes new parquet. It processed 51 GB of parquet files on 4 nodes (4 vcores, 32Gb RAM).
The job was constantly failing on aggregation stage. I wrote bash script watch executors memory usage and found out that in the middle of the stage one random executor starts taking double memory for a few seconds. When I correlated time of this moment with GC logs it matched with full GC that empties big amount of memory.
At last I understood that the problem is related somehow to GC. ParallelGC and G1 causes this issue constantly but ConcMarkSweepGC improves the situation. The issue appears only with small amount of partitions. I ran the job on EMR where OpenJDK 64-Bit (build 25.171-b10) was installed. I don't know the root cause of the issue, it could be related to JVM or operating system. But it is definitely not related to heap or off-heap usage in my case.
UPDATE1
Tried Oracle HotSpot, the issue is reproduced.

Spark SQL > Join (Shuffle) > Join query always failed because of "executor failed"

I am using Spark SQL (1.5.1) to run JOIN query in Spark Shell. The data contains extremely amount of rows, and the JOIN query never succeeded. Anyway, if I process with Hive SQL on Hive with the same data set, everything went fine. So probably there is something wrong with my configuration
From the console ouput, I found
"[Stage 2:=========================> (92 + 54) / 200]15/10/29 14:26:23 ERROR YarnScheduler: Lost executor 1 on cn233.local: remote Rpc client disassociated"
On base of this Spark started 200 executors by default on base of the configuration spark.shuffle.partitions, and this definitely consumed all memory as I have a small cluster
So how to solve this problem?
Client disassociated error occurs mostly in case of Spark executor running out of memory. You can try the following options
Increase the Executor memory
--executor-memory 20g
You may also try to tune your memory overhead, if your application is using a lot of JVM memory.
--conf spark.yarn.executor.memoryOverhead=5000
Try adjusting the akka framesize, (Default 100MB)
--conf spark.akka.frameSize=1000
May be you may also want to try with smaller block size for the input data. This will increase the tasks, and each tasks will have lesser data to work with, This may prevent executor from running into OutOfMemory.

Resources