Analyzing the operations of a savedmodel in tensorflow 2.0 - python-3.x

I need to write a program that loads a pretrained model in SavedModel format and analyzes the types of operations present in the graph.
In TF1 I used graph.get_operations() to get the list of all nodes and I could even modify the graph using tf.contrib.graph_editor. In TF2 these APIs don't work anymore: the list of operations doesn't provide useful information (I can't distinguish a Matmul from an Add node for example) and the tf.contrib.graph_editor has been deleted.
I know that in TF2 I can still "explore" the model visually with tensorboard and/or the debugger, but I need to write a program that can do this analysis automatically.
Is there any way to do that using python?
Thank you.

Related

How to get the inference compute graph of the pytorch model?

I want to hand write a framework to perform inference of a given neural network. The network is so complicated, so to make sure my implementation is correct, I need to know how exactly the inference process is done on device.
I tried to use torchviz to visualize the network, but what I got seems to be the back propagation compute graph, which is really hard to understand.
Then I tried to convert the pytorch model to ONNX format, following the instruction enter link description here, but when I tried to visualize it, it seems that the original layers of the model had been seperated into very small operators.
I just want to get the result like this
How can I get this? Thanks!
Have you tried saving the model with torch.save (https://pytorch.org/tutorials/beginner/saving_loading_models.html) and opening it with Netron? The last view you showed is a view of the Netron app.
You can try also the package torchview, which provides several features (useful especially for large models). For instance you can set the display depth (depth in nested hierarchy of moduls).
It is also based on forward prop
github repo
Disclaimer: I am the author of the package
Note: The accepted format for tool is pytorch model

Can I combine two ONNX graphs together, passing the output from one as input to another?

I have a model, exported from pytorch, I'll call main_model.onnx. It has an input node I'll call main_input that expects a list of integers. I can load this in onnxruntime and send a list of ints and it works great.
I made another ONNX model I'll call pre_model.onnx with input pre_input and output pre_output. This preprocesses some text so input is the text, and pre_output is a list of ints, exactly as main_model.onnx needs for input.
My goal here is, using the Python onnx.helper tools, create one uber-model that accepts text as input, and runs through my pre-model.onnx, possibly some connector node (Identity maybe?), and then through main_model.onnx all in one big combined.onnx model.
I have tried using pre_model.graph.node+Identity connector+main_model.graph.node as nodes in a new graph, but the parameters exported from pytorch are lost this way. Is there a way to keep all those parameters and everything around, and export this one even larger combined ONNX model?
This is possible to achieve albeit a bit tricky. You can explore the Python APIs offered by ONNX (https://github.com/onnx/onnx/blob/master/docs/PythonAPIOverview.md). This will allow you to load models to memory and you'll have to "compose" your combined model using the APIs exposed (combine both the GraphProto messages into one - this is easier said than done - you' ll have to ensure that you don't violate the onnx spec while doing this) and finally store the new Graphproto in a new ModelProto and you have your combined model. I would also run it through the onnx checker on completion to ensure the model is valid post its creation.
If you have static size inputs, sclblonnx package is an easy solution for merging Onnx models. However, it does not support dynamic size inputs.
For dynamic size inputs, one solution would be writing your own code using ONNX API as stated earlier.
Another solution would be converting the two ONNX models to a framework(Tensorflow or PyTorch) using tools like onnx-tensorflow or onnx2pytorch. Then pass the outputs of one network as inputs of the other network and export the whole network to Onnx format.

Keras use multi-gpu without Model object (not for training)

I have a bunch of tensor operations (matmul, transpose, etc..) I would like to run on a large dataset.
Since they are still matrix operations, and since I am using Keras generators to load the data batches, It would make sense to use GPUs to compute them.
Now, I've searched a while and I can't seem to find which is the correct way to use Keras to do parallel GPU operations, using generators, outside of the standard Model object interface.
Does anyone know how to do it? Thanks!

Using a pytorch model for inference

I am using the fastai library (fast.ai) to train an image classifier. The model created by fastai is actually a pytorch model.
type(model)
<class 'torch.nn.modules.container.Sequential'>
Now, I want to use this model from pytorch for inference. Here is my code so far:
torch.save(model,"./torch_model_v1")
the_model = torch.load("./torch_model_v1")
the_model.eval() # shows the entire network architecture
Based on the example shown here: http://pytorch.org/tutorials/beginner/data_loading_tutorial.html#sphx-glr-beginner-data-loading-tutorial-py, I understand that I need to write my own data loading class which will override some of the functions in the Dataset class. But what is not clear to me is the transformations that I need to apply at test time? In particular, how do I normalize the images at test time?
Another question: is my approach of saving and loading the model in pytorch fine? I read in the tutorial here: http://pytorch.org/docs/master/notes/serialization.html that the approach that I have used is not recommended. The reason is not clear though.
Just to clarify: the_model.eval() not only prints the architecture, but sets the model to evaluation mode.
In particular, how do I normalize the images at test time?
It depends on the model you have. For instance, for torchvision modules, you have to normalize the inputs this way.
Regarding on how to save / load models, torch.save/torch.load "saves/loads an object to a disk file."
So, if you save the_model, it will save the entire model object, including its architecture definition and some other internal aspects. If you save the_model.state_dict(), it will save a dictionary containing the model state (i.e. parameters and buffers) only. Saving the model can break the code in various ways, so the preferred method is to save and load only the model state. However, I'm not sure if fast.ai "model file" is actually a full model or the state of a model. You have to check this so you can correctly load it.

sklearn pickled model "Attribute Error: model has no attribute classes_"

I built a sklearn model in one PC and pickled it. When, I tried to use the same model in another PC, I get below error:
Attribute Error: model has no attribute classes_
When I built the model , I did check
Model.classes_
It printed the classes. What could be the reason for this?
it would help knowing the version details of scikit-learn in both the PCs but the information on the website tells it is possible to happen due to different versions. Hope it helps.
Think of pickle as a way to dump and load a snapshot of an object and its environment at a given moment.
Sometimes the object you deal with does not mean anything by itself . You must provide extra data with it.
That's particularly the case with trained classifiers. In your case, model_classes works perfectly in your script when you have you data and fitted your classifier. Suppose now that you have dumped the classifier and loaded it later in another script : what are the classes you are talking about ? About what data are we talking about ? ... Got it ?
What you have to do then is to provide additional meta data when pickling.
This section of sklearn's documentation describes what needs to be pickled alonside the classifier (training data, source code ...).
NB:
Check first that both versions of sklearn are the same. Sometimes it can be just that.

Resources