How reindex_like function works with method "ffill" & "bfill"? - python-3.x

I have two dataframe of shape (6,3) & (2,3). Now I want to reindex second dataframe like first dataframe and also fill na values with either ffill method or bfill method. my code is as follows:
df1 = pd.DataFrame(np.random.randn(6,3),columns = ['Col1','Col2','Col3'])
df2 = pd.DataFrame(np.random.randn(2,3),columns = ['Col1','Col2','Col3'])
df2 = df2.reindex_like(df1,method='ffill')
But this code is not working well as I am getting following result:
Col1 Col2 Col3
0 0.578282 -0.199872 0.468505
1 1.086811 -0.707933 -0.924984
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
Any suggestion would be great

Related

Summing up two columns of pandas dataframe ignoring NaN

I have a pandas dataframe as below:
import pandas as pd
df = pd.DataFrame({'ORDER':["A", "A"], 'col1':[np.nan, np.nan], 'col2':[np.nan, 5]})
df
ORDER col1 col2
0 A NaN NaN
1 A NaN 5.0
I want to create a column 'new' as sum(col1, col2) ignoring Nan only if one of the column as Nan,
If both of the columns have NaN value, it should return NaN as below
I tried the below code and it works fine. Is there any way to achieve the same with just one line of code.
df['new'] = df[['col1', 'col2']].sum(axis = 1)
df['new'] = np.where(pd.isnull(df['col1']) & pd.isnull(df['col2']), np.nan, df['new'])
df
ORDER col1 col2 new
0 A NaN NaN NaN
1 A NaN 5.0 5.0
Do sum with min_count
df['new'] = df[['col1','col2']].sum(axis=1,min_count=1)
Out[78]:
0 NaN
1 5.0
dtype: float64
Use the add function on the two columns, which takes a fill_value argument that lets you replace NaN:
df['col1'].add(df['col2'], fill_value=0)
0 NaN
1 5.0
dtype: float64
Is this ok?
df['new'] = df[['col1', 'col2']].sum(axis = 1).replace(0,np.nan)

How do i remove nan values from dataframe in Python. dropna() does not seem to be working for me

How do i remove nan values from dataframe in Python? I already tried with dropna(), but that did not work for me. Also is NaN diffferent from nan. I am using Pandas.
While printing the data frame it does not print as NaN but instead as nan.
1 2.11358 0.649067060588935
2 nan 0.6094130485307419
3 2.10066 0.3653980276694516
4 2.10545 nan
You can change nan values with NaN using replace() and then use dropna().
import numpy as np
df = df.replace('nan', np.nan)
df = df.dropna()
Update:
Original dataframe:
1 2.11358 0.649067060588935
2 nan 0.6094130485307419
3 2.10066 0.3653980276694516
4 2.10545 nan
Applied df.replace('nan', np.nan):
1 2.11358 0.649067060588935
2 NaN 0.6094130485307419
3 2.10066 0.3653980276694516
4 2.10545 NaN
Applied df.dropna():
1 2.11358 0.649067060588935
3 2.10066 0.3653980276694516

Trying to append a single row of data to a pandas DataFrame, but instead adds rows for each field of input

I am trying to add a row of data to a pandas DataFrame, but it keeps adding a separate row for each piece of data. I feel I am missing something very simple and obvious, but what it is I do not know.
import pandas
colNames = ["ID", "Name", "Gender", "Height", "Weight"]
df1 = pandas.DataFrame(columns = colNames)
df1.set_index("ID", inplace=True, drop=False)
i = df1.shape[0]
person = [{"ID":i},{"Name":"Jack"},{"Gender":"Male"},{"Height":177},{"Weight":75}]
df1 = df1.append(pandas.DataFrame(person, columns=colNames))
print(df1)
Output:
ID Name Gender Height Weight
0 0.0 NaN NaN NaN NaN
1 NaN Jack NaN NaN NaN
2 NaN NaN Male NaN NaN
3 NaN NaN NaN 177.0 NaN
4 NaN NaN NaN NaN 75.0
You are using too many squiggly brackets. All of your data should be inside one pair of squiggly brackets. This creates a single python dictionary. Change that line to:
person = [{"ID":i,"Name":"Jack","Gender":"Male","Height":177,"Weight":75}]

combine row values in all consecutive rows that contains NaN and int values using pandas

I need your help:
I want to merge consecutive rows like this:
Input:
Time ColA ColB Time_for_test[sec]
2020-01-19 08:51:56.461 NaN B NaN
2020-01-19 08:52:15.405 NaN NaN 18.95
2020-01-19 08:52:40.923 A NaN NaN
2020-01-19 08:52:59.589 NaN NaN 18.67
2020-01-19 08:54:07.687 NaN B NaN
Output:
Time ColA ColB Time_for_test[sec]
2020-01-19 08:51:56.461 NaN B NaN
2020-01-19 08:52:15.405 NaN B 18.95
2020-01-19 08:52:40.923 A NaN NaN
2020-01-19 08:52:59.589 A NaN 18.67
2020-01-19 08:54:07.687 NaN B NaN
Of course, I checked if exist similar cases published on the site:
I tried one adding a new column like that:
merge_df = merge_df.fillNa(0)
merge_df['sum'] = merge_df['TableA']+merge_df['Time_for_ST[sec]'].shift(-1)
It did not work.
Thank you for patience
stack and unstack are your friends. Assuming your dataframe index is unique:
df[['ColA', 'ColB']].stack() \
.reset_index(level=1) \
.reindex(df.index) \
.ffill() \
.set_index('level_1', append=True) \
.unstack() \
.droplevel(0, axis=1)
Since it's one long operation chain, you can run only line 1, then line 1,2, then 1,2,3.... to see how it works.

Pandas append returns DF with NaN values

I'm appending data from a list to pandas df. I keep getting NaN in my entries.
Based on what I've read I think I might have to mention the data type for each column in my code.
dumps = [];features_df = pd.DataFrame()
for i in range (int(len(ids)/50)):
dumps = sp.audio_features(ids[i*50:50*(i+1)])
for i in range (len(dumps)):
print(list(dumps[0].values()))
features_df = features_df.append(list(dumps[0].values()), ignore_index = True)
Expected results, something like-
[0.833, 0.539, 11, -7.399, 0, 0.178, 0.163, 2.1e-06, 0.101, 0.385, 99.947, 'audio_features', '6MWtB6iiXyIwun0YzU6DFP', 'spotify:track:6MWtB6iiXyIwun0YzU6DFP', 'https://api.spotify.com/v1/tracks/6MWtB6iiXyIwun0YzU6DFP', 'https://api.spotify.com/v1/audio-analysis/6MWtB6iiXyIwun0YzU6DFP', 149520, 4]
for one row.
Actual-
danceability energy ... duration_ms time_signature
0 NaN NaN ... NaN NaN
1 NaN NaN ... NaN NaN
2 NaN NaN ... NaN NaN
3 NaN NaN ... NaN NaN
4 NaN NaN ... NaN NaN
5 NaN NaN ... NaN NaN
For all rows
append() strategy in a tight loop isn't a great way to do this. Rather, you can construct an empty DataFrame and then use loc to specify an insertion point. The DataFrame index should be used.
For example:
import pandas as pd
df = pd.DataFrame(data=[], columns=['n'])
for i in range(100):
df.loc[i] = i
print(df)
time python3 append_df.py
n
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
real 0m13.178s
user 0m12.287s
sys 0m0.617s
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.append.html
Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once.

Resources