One Instance-One Request at a time App Engine Flexible - node.js

I am using
App Engine Flexible, custom runtime.
nodejs, as base Image.
express
Cloud Tasks for queuing the requests
puppeteer job
My Requirements
20GB RAM
long-running process
because of my unique requirement, I want 1 request to be handled by only 1 instance. when it gets free or the request gets timed-out, only then it should get a new request.
I have managed to reject other requests while the instance is processing 1 request, but not able to figure out the appropriate automatic scaling settings.
Please suggest the best way to achieve this.
Thanks in advance!

In your app.yaml try restricting the max_instances and max_concurrent_requests.
I also recommend looking into rate limiting your Cloud Tasks queue in order to reduce unnecessary attempts to send requests. Also you may want to increase your MIN_INTERVAL for retry attempts to spread out requests as well.
Your task queue will continue to process and send tasks by the rate you have set, so if your instance rejects the request it will go into a retry pattern. It seems like you're focused on the scaling of App Engine but your issue is with Cloud Tasks. You may want to schedule your tasks so they fire at the interval you want.

You could set readiness checks on your app.
When an instance is handling a request, set the readiness check to return a non-ready status. 429 (too many requests) seems like a good option.
This should avoid traffic to that specific instance.
Once the request is finished, return a 200 from the readiness endpoint to signal that the instance is ready to accept a new request.
However, I'm not sure how will this work with auto-scaling options. Since the app will only scale up once the average CPU is over the threshold defined, if all instances are occupied but do not reach that threshold, the load balancer won't know where to route requests (no instances are ready), and it won't scale up.
You could play around a little bit with this idea and manual scaling, or by programatically changing min_instances (in automatic scaling) through the GAE admin API.
Be sure to always return a 200 for the liveness check, or the instance will be killed as it will be considered unhealthy.

Related

air traffic controller for threads when calling a REST API

DISCLAIMER: If this post is off-topic to this site, please recommend a site where this post would be appropriate.
On Ubuntu 18.04, in bash, I am writing a network-based, threaded application that requires multiple servers. It receives files through the network and processes them, ultimately making an API call that finishes the processing and logs the results to a database for later retrieval and reporting.
So far I have written the application using non-threaded programming models and concepts. That means the files are processed one at a time in real-time. This works great if there is no sudden burst of files and/or a backlog of files to process. The main bottle neck has been the way I sequentially send files to the API one after another, waiting until the entire operation has taken place for one file and the API returns the results. The API has a rate limit of 8 calls per second. But since each call takes from .75 to 1 second, my program waits until the operation is done and only processes about 1 file per second through the API. In short, I did not have to worry about scheduling API calls because I could barely do one call per second.
Since the capacity is there to process 8 files per second, and I need more speed, I have been converting my single-threaded, sequential application into a parallel, scalable, multi-threaded application. This new version can spawn enough threads to send 8 files per second to the REST API and much more. So now I have the opposite problem. I am sending too many requests per second to the REST API and am in danger of triggering penalties, etc. Ultimately, when my traffic is higher, I will upgrade my subscription to the API and get more calls per second, but this current dilemma has got me thinking about how to schedule the API calls with different threads.
The purpose of this post is to discuss an idea about how to schedule these REST API calls across various threads. Specifically, I want to discuss how to coordinate timing and usage of the API while maintaining efficiency and yet not overloading the API. In short, I want to coordinate a group of threads so that the API is properly used. Not too fast and not too slow.
Independent of my application, this idea could be useful in a number of generically similar scenarios.
My idea is to create an "air traffic controller" ("ATC") so that the threads of the application have a centralized timing authority to check when they are ready to submit files to the REST API. The ATC would know how many time slots/calls per time period (in this case, calls per second) the API can schedule. The ATC would be listening for the threads to request a time slot ("launch code") which would give them a time slot in the future to perform their API call. The ATC would decide based on the schedule of other launch codes that it has already handed out.
In my case, from the start of the upload of the file to the API, it could take 0.75 to 1 second to complete the processing and receive a response from the API. This does not affect the count of new API calls that can be performed. It is just a consideration of how long the threads will be waiting once they call the API. It may not be relevant to this overall discussion.
Each thread would obviously have to do some error handling. If the API timed out or threw an error, then the thread would have to handle it and get back in line with the ATC -if appropriate- and ask for a new launch code. Maybe it should report the error to the ATC for centralized logging?
In situations where the file processing needs burst above 8 files per second, there would be a scheduling backlog where the threads should wait their turn as assigned by the ATC.
Here are some other considerations:
Function
The ATC would be a lightweight daemon that does the following:
- listens on some TCP port
- receives a request
security token (?), thread id, priority
- authenticates the request (?)
- examines schedule
- reserves the next available time slot
- returns the launch code
security token (?), current time, launch timing offset to current time, URL and auth token for the API
- expunged expired launch codes
The ATC would need the following:
- to know what port it is supposed to run on
- to know how many slots per time period it was set to schedule
(e.g. 8 per second)
- to have a super fast read/write access to the schedule (associative array?)
- to know the URL and corresponding auth token for the thread to use
- maybe to know multiple URLs and auth tokens for load balancing
Here are more things to consider:
Security
How could we keep the ATC secure while ensuring high performance?
Network-level security (e.g. firewalls allowing only the IP addresses of the file-processing servers?)
Auth tokens or logins and passwords?
Performance
What would the requirements be for this ATC server? Would this be taxing to a CPU and memory?
Timing
How often would an NTP call be needed? By the ATC server? By the servers which call the API?
Scalability
Being able to provide different URLs and auth tokens would allow the ATC to load balance with different API providers.
Threading of the ATC itself
Would the ATC need to spawn threads to be able to handle each new request?
How does a web server handle requests?
How would the various threads share a common schedule?
In a non-threaded environment, the ATC would possibly keep an associative array in memory to keep performance as high as possible. How would the various threads of the ATC have access to the same schedule?
So here is my question. Does this exist? If not, what are some best practices in trying to build the above?
It seems like a beanstalkd kind of network service except it only provides permission/scheduling and is extremely dependant on timing.

Throttling requests to third-party APIs when using cloud functions

We're running our Node backend on Firebase Functions, and have to frequently hit a third-party API (HubSpot), which is rate-limited to 100 requests / 10 seconds.
We're making these requests to HubSpot from our cloud functions, and often find ourselves exceeding HubSpot's rate-limit during campaigns or other website usage spikes. Also, since they are all write requests to update data on HubSpot, these requests cannot be made out of order.
Is there a way to throttle our requests to HubSpot, so as to not exceed their rate limit? Open to suggestions that may not necessarily involve cloud functions, although that would be preferred.
Note: When I say "throttle", I mean that all requests to HubSpot need to go through. I'm trying to achieve something similar to what Lodash's throttle method does, if that makes sense.
What we usually do in this case is store the data into a database, and then pass it over to HubSpot in a tempered way (e.g. without exceeding their rate limit) using a cron that runs every minute. For every data item that we pass to HubSpot successfully, we mark it as "success" in the database.
Cloud Functions can not be rate limited. It will always attempt to service requests and events as fast as they arrive. But you can use Cloud Tasks to create an task queue to spread out the load of some work over time using a configured rate limit. A task queue can target another HTTP function. This effectively makes your processing asynchronous, but is really the only mechanism that Google Cloud gives you to smooth out load.

How to find/cure source of function app throughput issues

I have an Azure function app triggered by an HttpRequest. The function app reads the request, tosses one copy of it into a storage table for safekeeping and sends another copy to a queue for further processing by another element of the system. I have a client running an ApacheBench test that reports approximately 148 requests per second processed. That rate of processing will not be enough for our expected load.
My understanding of function apps is that it should spawn as many instances as is needed to handle the load sent to it. But this function app might not be scaling out quickly enough as it’s only handling that 148 requests per second. I need it to handle at least 200 requests per second.
I’m not 100% sure the problem is on my end, though. In analyzing the performance of my function app I found a LOT of 429 errors. What I found online, particularly https://learn.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-request-limits, suggests that these errors could be due to too many requests being sent from a single IP. Would several ApacheBench 10K and 20K request load tests within a given day cause the 429 error?
However, if that’s not it, if the problem is with my function app, how can I force my function app to spawn more instances more quickly? I assume this is the way to get more throughput per second. But I’m still very new at working with function apps so if there is a different way, I would more than welcome your input.
Maybe the Premium app service plan that’s in public preview would handle more throughput? I’ve thought about switching over to that and running a quick test but am unsure if I’d be able to switch back?
Maybe EventHub is something I need to investigate? Is that something that might increase my apparent throughput by catching more requests and holding on to them until the function app could accept and process them?
Thanks in advance for any assistance you can give.
You dont provide much context of you app but this is few steps how you can improve
If you want more control you need to use App Service plan with always on to avoid cold start, also you will need to configure auto scaling since you are responsible in this plan and auto scale is not enabled by default in app service plan.
Your azure function must be fully async as you have external dependencies so you dont want to block thread while you are calling them.
Look on the limits. Using host.json you can tweek it.
429 error means that function is busy to process your request, so probably when you writing to table you are not using async and blocking thread
Function apps work very well and scale as it says. It could be because request coming from Single IP and Azure could be considering it DDOS. You can do the following
AzureDevOps Load Test
You can load test using one of the azure service . I am very sure they have better criteria of handling IPs. Azure DeveOps Load Test
Provision VM in Azure
The way i normally do is provision the VM (windows 10 pro) in azure and use JMeter to Load test. I have use this method to test and it works fine. You can provision couple of them and subdivide the load.
Use professional Load testing services
If possible you may use services like Loader.io . They use sophisticated algos to run the load test and provision bunch of VMs to run the same test.
Use Application Insights
If not already you must be using application insights to have a better look from server perspective. Go to live stream and see how many instance it would provision to handle the load test . You can easily look into events and error logs that may be arising and investigate. You can deep dive into each associated dependency and investigate the problem.

Backoff Strategy after hitting rate limits

When you hit the rate limits on getstream, the APIs start responding with errors.
What is the recommended approach as a backoff strategy to handle those failures and start recovery after that. I thought about logging them all and send all of them again after a minute or hour.
But what if user created a post (failed to be created on getstream, waiting for a backoff) and meanwhile user deletes it. The backoff script will send the post to getstream even if user deleted it.
What is recommended by getstream or anyone handled the situation like that?
As you point out, API rate-limit errors are typically handled with (exponential) backoff solutions.
This often involves additional application logic (flow control and queues) and special purpose data services / storage (message queues, async workers etc). This can add quite some complexity to an application.
When it comes to the Stream service, being rate-limited is usually an indication of either a flaw/deficiency in the implementation (much like a performance bug) or that the application has reached a scale that is beyond that the current plan is intended to support.
It'd be wise to contact Stream support directly about this.

How do Azure Functions scale out?

The scaling documentation for Azure Functions is a bit light on details for how Azure Functions decide when to add more instances of an app.
Say for example I have a function that is triggered by a Github webhook. 10,000 people simultaneously commit to the Github repo (with no merge conflicts ;) ), and Github calls my function 10,000 times in a very short period of time.
What can I expect to happen? Specifically,
Will Azure Functions throttle the webhook calls? i.e., will Azure Functions reject certain function calls if my function app is under high load?
Does Azure Functions queue the requests somehow? If so, where/how?
How many instances of my function app will Azure Functions create in this scenario? One for each request (i.e., 10,000), and each will run in parallel?
If my app function was scaled down to zero instances, because there was no load on it, could I expect to see some "warm-up time" before the first function is executed? Roughly how long?
Azure Functions won't reject a webhook call, but in the case of sudden, extreme load, some requests may timeout. For web apis, please include retry on the client, as a best practice.
They aren't queued in any persistent place. They are (implementation detail) managed by IIS.
(Implementation detail) Number of instances isn't a hard set thing. We have certain, unpublished protections in place, but we're designed to scale quite far. Your requests will be handled by multiple instances.
Yes. Right now, it's pretty hefty (seconds), but we'll be working to improve it. For perf sensitive situations, a canary or a timer trigger to keep it awake is recommended.
I'm from the Azure Functions team. The things I marked as implementation details aren't promises and will likely also change as we evolve our service; just an attempt at transparency.
tested today. it took more than seconds :(
ACTUAL PERFORMANCE
--------------
ClientConnected: 13:58:41.589
ClientBeginRequest: 13:58:41.592
GotRequestHeaders: 13:58:41.592
ClientDoneRequest: 13:58:41.592
Determine Gateway: 0ms
DNS Lookup: 65ms
TCP/IP Connect: 40ms
HTTPS Handshake: 114ms
ServerConnected: 13:58:41.703
FiddlerBeginRequest: 13:58:41.816
ServerGotRequest: 13:58:41.817
ServerBeginResponse: 14:00:36.790
GotResponseHeaders: 14:00:36.790
ServerDoneResponse: 14:00:36.790
ClientBeginResponse: 14:00:36.790
ClientDoneResponse: 14:00:36.790
Overall Elapsed: **0:01:55.198**

Resources