Regarding suggestion of best schema for a cassandra table? - cassandra

I want to have a table in Cassandra that has a partition key say column 'A', and a column say 'B' which is of 'set' type and can have up to 10000 elements in the set.
But when i retrieve a row from this table then the whole set is retrieved at once and because of that the JVM heap increases rapidly. So should i stick to this schema or go with other schema where 'A' is partition key and i make dynamic columns for each element in the set in my other schema say 'B1', 'B2' ..... 'B10,000'where each of this column is a clustering key.
Which schema is suited best and will give the optimal performance please recommend.
NOTE: cqlsh 5.0.1v

Based off of what you've described, and the documentation I've read, I would not create a collection with 10k elements. Instead I would have two tables, one with everything but the collection, and then use the primary key values of the first table, as the partition key columns of the second table; adding the element name (or whatever you can use to identify an individual element) as a clustering column.
So for a given query, if you wanted everything for a particular primary key value (including all elements), you'd query the first table with the primary key, grab whatever you need, then hit the second table as well, looping/fetching through all elements.
If the query only provides a filter on the partition key (not the primary key - i.e. retrieving multiple rows) , the first query would have to retrieve all columns that make up the primary key for each row, and then query the second table looping for all elements - nested loop here - one loop for each primary key record retrieved from the first table, and a second loop to grab all elements for each pk record.
Probably the best way to go with this. That's how I would probably tackle this.
Does that make sense?
-Jim

Related

How to have unique key except primary key in cassandra?

I am not good in English!
There is a table in Cassandra 3.5 which all columns of a row don't come at same time. Unique of table is some columns that are unique in a row together, but some of them are null at first. I can not set them the primary key because of null value. I have identify a column with name id and type uuid in Cassandra.
How can I have a unique key with that columns together in Cassandra?
Is my data model true?
How can I solve this problem?
You can't. It's not a relational DB. Use clustering and/or partitioning keys to add an unique constraint.
See this answer
To store unique values, create a separate table having your unique value as a key. Check if it exists by requesting this table before inserting a row. But beware, even doing this, you cannot ensure it will be unique in your final table if you have two concurrent inserts.
Basically, I would recommend using Cassandra as it really is: A data store. And find a way to implement your business logic where it belongs: in your code.

what's the difference among row key, primary key and index in cassandra?

I'm so confused.
When to use them and how to determine which one to use?
If a column is index/primary key/row key, could it be duplicated?
I want to create a column family to store some many-to-many info, for example, one column is the given name and the other is surname. One given name can related to many surnames, and one surname could have different given names.
I need to query surnames by a given name, and the given names by a specified surname too.
How to create the table?
Thanks!
Cassandra is a NoSQL database, and as such has no such concept of many-to-many relationships. Ideally a table should not have anything other than a primary key. In your case the right way to model it in Cassandra is to create two tables, one with name as the primary key and the other with surname as the primary key
When you need to query by either key, you need to query the table that has that key as the primary key
EDIT:
From the Cassandra docs:
Cassandra's built-in indexes are best on a table having many rows that
contain the indexed value. The more unique values that exist in a
particular column, the more overhead you will have, on average, to
query and maintain the index. For example, suppose you had a races
table with a billion entries for cyclists in hundreds of races and
wanted to look up rank by the cyclist. Many cyclists' ranks will share
the same column value for race year. The race_year column is a good
candidate for an index.
Do not use an index in these situations:
On high-cardinality columns for a query of a huge volume of records for a small number of results.
In tables that use a counter column On a frequently updated or deleted column.
To look for a row in a large partition unless narrowly queried.

Where and Order By Clauses in Cassandra CQL

I am new to NoSQL database and have just started using apache Cassandra. I created a simple table "emp" with primary key on "empno" column. This is a simple table as we always get in Oracle's default scott schema.
Now I loaded data using the COPY command and issued query Select * from emp order by empno but I was surprised that CQL did not allow Order by on empno column (which is PK). Also when I used Where condition, it did not allow any inequality operations on empno column (it said only EQ or IN conditions are allowed). It also did not allowed Where and Order by on any other column, as they were not used in PK, and did not have an index.
Can someone please help me what should I do if I want to keep empno unique in the table and want a query results in Sorted order of empno?
(My version is:
cqlsh:demodb> show version
[cqlsh 5.0.1 | Cassandra 2.2.0 | CQL spec 3.3.0 | Native protocol v4]
)
There are two parts to a PRIMARY KEY in Cassandra:
partition key(s)
clustering key(s)
PRIMARY KEY (partitionKey1,clusteringKey1,clusteringKey2)
or
PRIMARY KEY ((partitionKey1,partitionKey2),clusteringKey1,clusteringKey2)
The partition key determines which node(s) your data is stored on. The clustering key determines the order of the data within your partition key.
In CQL, the ORDER BY clause is really only used to reverse the defined sort direction of your clustering order. As for the columns themselves, you can only specify the columns defined (and in that exact order...no skipping) in your CLUSTERING ORDER BY clause at table creation time. So you cannot pick arbitrary columns to order your result set at query-time.
Cassandra achieves performance by using the clustering keys to sort your data on-disk, thereby only returning ordered rows in a single read (no random reads). This is why you must take a query-based modeling approach (often duplicating your data into multiple query tables) with Cassandra. Know your queries ahead of time, and build your tables to serve them.
Select * from emp order by empno;
First of all, you need a WHERE clause. It's ok to query without it, if you're working with a relational database. With Cassandra, you should do your best to avoid unbound SELECT queries. Besides, Cassandra can only enforce a sort order within a partition, so querying without a WHERE clause won't return data in the order you want, anyway.
Secondly, as I mentioned above, you need to define clustering keys. If you want to order your result set by empno, then you must find another column to define as your partition key. Try something like this:
CREATE TABLE emp_by_dept (
empno text,
dept text,
name text,
PRIMARY KEY (dept,empno)
) WITH CLUSTERING ORDER BY (empno ASC);
Now, I can query employees by department, and they will be returned to me ordered by empno:
SELECT * FROM emp_by_dept WHERE dept='IT';
But to be clear, you will not be able to query every row in your table, and have it ordered by a single column. The only way to get meaningful order into your result sets, is first partition your data in a way that makes sense to your business case. Running an unbound SELECT will return all of your rows (assuming that the query doesn't time-out while trying to query every node in your cluster), but result set ordering can only be enforced within a partition. So you have to restrict by partition key in order for that to make any sense.
My apologies for self-promoting, but last year I wrote an article for DataStax called We Shall Have Order!, in which I addressed how to solve these types of problems. Give it a read and see if it helps.
Edit for additional questions:
From your answer I concluded 2 things about Cassandra:
(1) There is no
way of getting a result set which is only order by a column that has
been defined as Unique.
(2) When we define a PK
(partition-key+clustering-key), then the results will always be order
by Clustering columns within any fixed partition key (we must restrict
to one partition-key value), that means there is no need of ORDER BY
clause, since it cannot ever change the order of rows (the order in
which rows are actually stored), i.e. Order By is useless.
1) All PRIMARY KEYs in Cassandra are unique. There's no way to order your result set by your partition key. In my example, I order by empno (after partitioning by dept). – Aaron 1 hour ago
2) Stopping short of saying that ORDER BY is useless, I'll say that its only real use is to switch your sort direction between ASC and DESC.
I created an index on "empno" column of "emp" table, it is still not
allowing ORDER BY empno. So, what Indexes are for? are they only for
searching records for specific value of index key?
You cannot order a result set by an indexed column. Secondary indexes are (not the same as their relational counterparts) really only useful for edge-case, analytics-based queries. They don't scale, so the general recommendation is not to use secondary indexes.
Ok, that simply means that one table cannot be used for getting
different result sets with different conditions and different sorting
order.
Correct.
Hence for each new requirement, we need to create a new table.
IT means if we have a billion rows in a table (say Sales table), and
we need sum of sales (1) Product-wise, (2) Region-wise, then we will
duplicate all those billion rows in 2 tables with one in clustering
order of Product, the other in clustering order of Region,. and even
if we need to sum sales per Salesman_id, then we build a 3rd table,
again putting all those billion rows? is it sensible?
It's really up to you to decide how sensible it is. But lack of query flexibility is a drawback of Cassandra. To get around it you can keep creating query tables (I.E., trading disk for performance). But if it gets to a point where it becomes ungainly or difficult to manage, then it's time to think about whether or not Cassandra is really the right solution.
EDIT 20160321
Hi Aaron, you said above "Stopping short of saying that ORDER BY is useless, I'll say that its only real use is to switch your sort direction between ASC and DESC."
But i found even that is not correct. Cassandra only allows ORDER by in the same direction as we define in the "CLUSTERING ORDER BY" caluse of CREATE TABLE. If in that clause we define ASC, it allows only order by ASC, and vice versa.
Without seeing an error message, it's hard to know what to tell you on that one. Although I have heard of queries with ORDER BY failing when you have too many rows stored in a partition.
ORDER BY also functions a little odd if you specify multiple columns to sort by. If I have two clustering columns defined, I can use ORDER BY on the first column indiscriminately. But as soon as I add the second column to the ORDER BY clause, my query only works if I specify both sort directions the same (as the CLUSTERING ORDER BY definition) or both different. If I mix and match, I get this:
InvalidRequest: code=2200 [Invalid query] message="Unsupported order by relation"
I think that has to do with how the data is stored on-disk. Otherwise Cassandra would have more work to do in preparing result sets. Whereas if it requires everything to either to match or mirror the direction(s) specified in the CLUSTERING ORDER BY, it can just relay a sequential read from disk. So it's probably best to only use a single column in your ORDER BY clause, for more predictable results.
Adding a redux answer as the accepted one is quite long.
Order by is currently only supported on the clustered columns of the PRIMARY KEY
and when the partition key is restricted by an Equality or an IN operator in where clause.
That is if you have your primary key defined like this :
PRIMARY KEY ((a,b),c,d)
Then you will be able to use the ORDER BY when & only when your query has :
a where clause with all the primary key restricted either by an equality operator (=) or an IN operator such as :
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY c,d;
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY c;
These two query are the only valid ones.
Also this query would not work :
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY d,c;
because order by currently only support the ordering of columns following their declared order in the PRIMARY KEY that is in primary key definition c has been declared before d and the query violates the ordering by placing d first.

What is the difference between a clustering column and secondary index in cassandra

I'm trying to understand the difference between these two and the scenarios in which you would prefer to use one over the other.
My specific use case is using cassandra as an event ingestion system backed by an analytics engine that interprets the event.
My model includes
event id (the partition key)
event time (a clustering column)
event type (i'm not sure whether to use clustering column or secondary index)
I figure the most common read scenario will be to get the events over a time range hence event time is the clustering column. A less frequent read scenario might involve further filtering the event query by event type.
A secondary index is pretty similar to what we know from regular relational databases. If you have a query with a where clause that uses column values that are not part of the primary key, lookup would be slow because a full row search has to be performed. Secondary indexes make it possible to service such queries efficiently. Secondary indexes are stored as extra tables, and just store extra data to make it easy to find your way in the main table.
So that's a good ol' index, which we already know about. So far, there's nothing new to cassandra and its distributed nature.
Partitioning and clustering is all about deciding how rows from the main table are spread among the nodes. This is unique to cassandara since it determines the distribution of data. So, the primary key consists of at least one column. The first column in the primary key is used as the partition key. The partition key is used to decide which node to store a row. If the primary key has additional columns, the columns are used to cluster the data on a given node - the data is stored in lexicographic order on a node by clustering columns.
This question has more specifics on clustering columns: Clustering Keys in Cassandra
So an index on a given column X makes the lookup X --> primary key efficient. The partition key (first column in the primary key) determines which node a row is stored on. Clustering columns (additional columns in the primary key) determine which order rows are stored in on their assigned node.
So your intuition sounds about right - the event ID is presumably guaranteed unique, so is great for building a primary key. Event time is a great way to order rows on disk on a given node.
If you never needed to lookup data by event type, eg, never had a query like SELECT * FROM Events WHERE Type = Warning, then you have no need for your additional indexes, but your demands for partitioning don't change. Indexes make it easy to serve queries with different predicates. Since you mentioned that you indeed were planning on performing queries like that, you do in fact likely want an index on your EventType column.
Check out the cassandra documentation: http://www.datastax.com/documentation/cql/3.0/cql/ddl/ddl_compound_keys_c.html
Cassandra uses the first column name in the primary key definition as the partition key.
...
In the case of the playlists table, the song_order is the clustering column. The data for each partition is clustered by the remaining column or columns of the primary key definition. On a physical node, when rows for a partition key are stored in order based on the clustering columns

How to make Cassandra have a varying column key for a specific row key?

I was reading the following article about Cassandra:
http://www.ebaytechblog.com/2012/07/16/cassandra-data-modeling-best-practices-part-1/#.UzIcL-ddVRw
and it seemed to imply you can have varying column keys in cassandra for a given row key. Is that true? And if its true, how do you allow for varying row keys.
The reason I think this might be true is because say we have a user and it can like many items and we simply want the userId to be the rowkey. We let this rowKey (userID) map to all the items that specific user might like. Each specific user might like a different number of items. Therefore, if we could have multiple column keys, one for each itemID each user likes, then we could solve the problem that way.
Therefore, is it possible to have varying length of cassandra column keys for a specific rowKey? (and how do you do it)
Providing an example and/or some cql code would be awesome!
The thing that is confusing me is that I have seen some .cql files and they define keyspaces before hand and it seems pretty inflexible on how to make it dynamic, i.e. allow it to have additional columns as we please. For example:
CREATE TABLE IF NOT EXISTS results (
test blob,
tid timeuuid,
result text,
PRIMARY KEY(test, tid)
);
How can this even allow growing columns? Don't we need to specify the name before hand anyway?Or additional custom columns as the application desires?
Yes, you can have a varying number of columns per row_key. From a relational perspective, it's not obvious that tid is the name of a variable. It acts as a placeholder for the variable column key. Note in the inserts statements below, "tid", "result", and "data" are never mentioned in the statement.
CREATE TABLE IF NOT EXISTS results (
data blob,
tid timeuuid,
result text,
PRIMARY KEY(test, tid)
);
So in your example, you need to identify the row_key, column_key, and payload of the table.
The primary key contains both the row_key and column_key.
Test is your row_key.
tid is your column_key.
data is your payload.
The following inserts are all valid:
INSERT your_keyspace.results('row_key_1', 'a4a70900-24e1-11df-8924-001ff3591711', 'blob_1');
INSERT your_keyspace.results('row_key_1', 'a4a70900-24e1-11df-8924-001ff3591712', 'blob_2');
#notice that the column_key changed but the row_key remained the same
INSERT your_keyspace.results('row_key_2', 'a4a70900-24e1-11df-8924-001ff3591711', 'blob_3');
See here
Did you thought of exploring collection support in cassandra for handling such relations in colocated way{e.g. on same data node}.
Not sure if it helps, but what about keeping user id as row key and a map containing item id as key and some value?
-Vivel

Resources