Should user chat message be an aggregate? - domain-driven-design

When modeling a typical chat application (with infinite chats), should each message be treated as an aggregate instance?
Aggregates should be kept small, and can not think of some other decent and small candidate to contain user messages. But at the same time, I just wonder I should use an aggregate concept for such a small object of the system.

should each message be treated as an aggregate instance?
This is a good question, but asked to wrong group of people, as we don't know your business :)
Aggregate is a synonym for the boundary of a transactional
consistency. [...] Properly designed Aggregate is the one, that can be
modified in the way business needs to modify it, while providing
business rules to be consistent as part of a single transaction. [...]
Aggregates are mostly about consistency boundaries, and their design
should not controlled by the need to create object graphs. [...] ~ Implementing Domain-Driven Design, Vaughn Vernon
Aggregates are mostly about transactional consistency in business rules. You should ask business if there are any rules regarding a single chat message. In a typical chat application probably not, but you have to ask business.
In a simplest chat application I can imagine, my chat message would rather be a Value Object. Or I would not even use DDD as Tseng mentioned. I can't think of any business rules I would need and it would definitly be immutable.

Related

DDD, CQRS/ES & MicroServices Should Decisions be taken on Microservice's views or aggregates?

So I'll explain the problem through the use of an example as it makes everything more concrete and hopefully will reduce ambiguity.
The Architecture is pretty simple
1 MicroService <=> 1 Aggregate <=> Transactional Boundry
Each microservice will be using CQRS/ES design pattern which implies
Each microservice will have its own Aggregate mapping the domain of a real-world problem
The state of the aggregate will be rebuilt from an event store
Each event will signify a state change within the aggregate and will be transmitted to any service interested in the change via a message broker
Each microservice will be transactional within its own domain
Each microservice will be eventually consistent with other domains
Each microservice will build there own view models, from events being emitted by other microservices
So the example lets say we have a banking system
current-account microservice is responsible for mapping the Customer Current Account ... Withdrawal, Deposits
rewards microservice will be responsible for inventory and stock take of any rewards being served by the bank
air-miles microservice will be responsible for monitoring all the transaction coming from the current-account and in doing so award the Customer with rewards, from our reward micro-service
So the problem is this Should the air-miles microservice take decisions based on its own view model which is being updated from events coming from the current-account, and similarly, on picking which reward it should give out to the Customer?
Drawbacks of taking decisions on local view models;
Replicating domain logic on how to maintain these views
Bugs within the view might propagate the wrong rewards to be given out
State changes (aka events emitted) on corrupted view models could have consequences in other services which are taking their own decisions on these events
Advantages of taking a decision on local view models;
The system doesn't need to constantly query the microservice owning the domain
The system should be faster and less resource intense
Or should it use the events coming from the service to trigger queries to the Aggregate owning the Domain, in doing so we accept the fact that view models might get corrupt but the final decision should always be consulted with the aggregate owning the domain?
Please, not that the above problem is simply my understanding of the architecture, and the aim of this post is to get different views on how one might use this architecture effectively in a microservice environment to keep each service decoupled yet avoid cascading corruption scenario without to much chatter between the service.
So the problem is this Should the air-miles microservice take decisions based on its own view model which is being updated from events coming from the current-account, and similarly, on picking which reward it should give out to the Customer?
Yes. In fact, you should revise your architecture and even create more microservices. What I mean is that, being a event-driven architecture (also an Event-sourced one), your microservices have two responsibilities: they need to keep two different models: the write model and the read model.
So, for each Aggregate should be a microservice that keeps only the write model, that is, it only processes Commands, without building also a read model.
Then, for each read/query use case you should have a microservice that build the perfect read model. This is required if you need to keep the Aggregate microservice clean (as you should) because in general, the read models needs data from multiple Aggregate types/bounded contexts. Read models may cross bounded context boundaries, Aggregates may not. So you see, you don't really have a choice if you need to fully respect DDD.
Some says that domain events should be hidden, only local to the owning microservice. I disagree. In an event-driven architecture the domain events are first class citizens, they are allowed to reach other microservices. This gives the other microservices the chance to build their own interpretation of the system state. Otherwise, the emitting microservice would have the impossible additional responsibility/task of building a state that must match every possible need that all the microservices would ever want(!); i.e. maybe a microservices would want to lookup a deleted remote entity's title, how could it do that if the emitting microservice keeps only the list of non-deleted-yet entities? You may say: but then it will keep all the entities, deleted or not. But maybe someone needs the date that an entity was deleted; you may say: but then I keep also the deletedDate. You see what you do? You break the Open/closed principle. Every time you create a microservice you need to modify the emitting microservice.
There is also the resilience of the microservices. In the Art of scalability, the authors speak about swimming lanes. They are a strategy to separate the components of a system into lanes of failures. A failure in a lane does not propagate to other lanes. Our microservices are lanes. Components in a lane are not allowed to access any component from other lane. One down microservice should not bring the others down. It's not a matter of speed/optimisation, it's a matter of resilience. The domain events are the perfect modality of keeping two remote systems synchronized. They also emphasize the fact that the data is eventually consistent; the events travel at a limited speed (from nanoseconds to even days). When a system is designed with that in mind then no other microservice can bring it down.
Yes, there will be some code duplication. And yes, although I said that you don't have a choice, you have. In order to reduce the code duplication at the cost of a lower resilience, you can have some Canonical read models that build a normal flat state and other microservices could query that. This is dangerous in most cases as it breaks the swimming lanes concept. Should the Canonical microservices go down, go down all dependent microservices. Canonical microservices works best for CRUD-like bounded context.
There are however valid cases when you may have some internal events that you don't want to expose. In other words, you are not required to publish all domain events.
So the problem is this Should the air-miles micro service take decisions based on its own view model which is being updated from events coming from the current-account, and similarly, on picking which reward it should give out to the Customer?
Each consumer uses a local replica of a representation computed by the producer.
So if air-miles needs information from current-account it should be looking at a local replica of a view calculated by the current-account service.
The key idea is this: micro services are supposed to be isolated from one another; you should be able to redesign and deploy one without impacting the others.
So try this thought experiment - suppose we had these three micro services, but all saving snapshots of current state, rather than events. Everything works, then imagine that the current-account maintainer discovers that an event sourced implementation would better serve the business.
Should the change to the current-account require a matching change in the air-miles service? If so, can we really claim that these services are isolated from one another?
Advantages of taking a decision on local view models
I don't particularly like these "advantages"; first, they are dominated by the performance axis (please recall that the second rule of performance optimization is "not yet"). And second, that they assume that the service boundaries are correctly drawn; maybe the performance issue is evidence that the separation of responsibilities needs review.

CQRS Commands and Queries - Do they belong in the domain?

In CQRS, do they Commands and Queries belong in the Domain?
Do the Events also belong in the Domain?
If that is the case are the Command/Query Handlers just implementations in the infrastructure?
Right now I have it layed out like this:
Application.Common
Application.Domain
- Model
- Aggregate
- Commands
- Queries
Application.Infrastructure
- Command/Query Handlers
- ...
Application.WebApi
- Controllers that utilize Commands and Queries
Another question, where do you raise events from? The Command Handler or the Domain Aggregate?
Commands and Events can be of very different concerns. They can be technical concerns, integration concerns, domain concerns...
I assume that if you ask about domain, you're implementing a domain model (maybe even with Domain Driven Design).
If this is the case I'll try to give you a really simplified response, so you can have a starting point:
Command: is a business intention, something you want a system to do. Keep the definition of the commands in the domain. Technically it is just a pure DTO. The name of the command should always be imperative "PlaceOrder", "ApplyDiscount" One command is handled only by one command handler and it can be discarded if not valid (however you should make all the validation possible before sending the command to your domain so it cannot fail)
Event: this is something that has happened in the past. For the business it is the immutable fact that cannot be changed. Keep the definition of the domain event it in the domain. Technicaly it's also a DTO object. However the name of the event should always be in the past "OrderPlaced", "DiscountApplied". Events generally are pub/sub. One publisher many handlers.
If that is the case are the Command/Query Handlers just implementations in the infrastructure?
Command Handlers are semantically similar to the application service layer. Generally application service layer is responsible for orchestrating the domain. It's often build around business use cases like for example "Placing an Order". In those use cases invoke business logic (which should be always encapsulated in the domain) through aggregate roots, querying, etc. It's also a good place to handle cross cutting concerns like transactions, validation, security, etc.
However, application layer is not mandatory. It depends on the functional and technical requirements and the choices of architecture that has been made.
Your layring seems correct. I would better keep command handlers at the boundary of the system. If there is not a proper application layer, a command handler can play a role of the use case orchestrator. If you place it in the Domain, you won't be able to handle cross cutting concerns very easily. It's a tradeoff. You should be aware of the pro and cons of your solution. It may work in one case and not in another.
As for the event handlers. I handle it generally in
Application layer if the event triggers modification of another Aggregate in the same bounded context or if the event trigger some infrastructure service.
Infrastructure layer if the event need to be split to multiple consumers or integrate other bounded context.
Anyway you should not blindly follow the rules. There are always tradeoffs and different approaches can be found.
Another question, where do you raise events from? The Command Handler or the Domain Aggregate?
I'm doing it from the domain aggregate root. Because the domain is responsible for raising events.
As there is always a technical rule, that you should not publish events if there was a problem persisting the changes in the aggregate and vice-versa I took the approach used in Event Sourcing and that is pragmatic. My aggregate root has a collection of Unpublished events. In the implementation of my repository I would inspect the collection of Unpublished events and pass them to the middleware responsible for publishing events. It's easy to control that if there is an exception persisting an aggregate root, events are not published. Some says that it's not the responsibility of the repository, and I agree, but who cares. What's the choice. Having awkward code for event publishing that creeps into your domain with all the infrastructure concerns (transaction, exception handling, etc) or being pragmatic and handle all in the Infrastructure layer? I've done both and believe me, I prefer to be pragmatic.
To sum up, there is no a single way of doing things. Always know your business needs and technical requirements (scalability, performance, etc.). Than make your choices based on that. I've describe what generally I've done in the most of cases and that worked. It's just my opinion.
In some implementations, Commands and handlers are in the Application layer. In others, they belong in the domain. I've often seen the former in OO systems, and the latter more in functional implementations, which is also what I do myself, but YMMV.
If by events you mean Domain Events, well... yes I recommend to define them in the Domain layer and emit them from domain objects. Domain events are an essential part of your ubiquitous language and will even be directly coined by domain experts if you practise Event Storming for instance, so it definitely makes sense to put them there.
What I think you should keep in mind though is that no rule about these technical details deserves to be set in stone. There are countless questions about DDD template projects and layering and code "topology" on SO, but frankly I don't think these issues are decisive in making a robust, performant and maintainable application, especially since they are so context dependent. You most likely won't organize the code for a trading system with millions of aggregate changes per minute in the same way that you would a blog publishing platform used by 50 people, even if both are designed with a DDD approach. Sometimes you have to try things for yourself based on your context and learn along the way.
Command and events are DTOs. You can have command handlers and queries in any layer/component. An event is just a notification that something changed. You can have all type of events: Domain, Application etc.
Events can be generated by both handler and aggregate it's up to you. However, regardless where they are generated the command handler should use a service bus to publish the events. I prefer to generate domain events inside the aggregate root.
From a DDD strategic point of view, there are just business concepts and use cases. Domain events, commands, handlers are technical details. However all domain use cases are usually implemented as a command handler, therefore command handlers should be part of the domain as well as the query handlers implementing queries used by the domain. Queries used by the UI can be part of the UI and so on.
The point of CQRS is to have at least 2 models and the Command should be the domain model itself. However you can have a Query model, specialised for domain usage but it's still a read (simplified) model. Consider the command model as being used only for updates, the read model only for queries. But, you can have multiple read models (to be used by a specific layer or component) or just a generic (used for everything query) one.

Can you suggest DDD best practices

Probably similar questions have been asked many times but I think that every response helps to make the understanding of DDD better and better. I would like to describe how I perceive certain aspects of DDD. I have some basic uncertainties around it and would appreciate if someone could give a solid and practical anwser. Please note, these questions assume a 'classic' approach to DDD. This means using ORM's etc. Approaches like CQRS and event sourcing are not considered here.
Aggregates and entities are the primary objects that implement domain logic. They have state and identity. In this context, I perceive domain logic as the set of all commands that mutate that state. Does that make sense? Why is domain logic related exclusively to state? Is it legal to model domain objects that have no identitiy or no state? Why can't a domain object be implemented as a transaction script? Example: Consider an object that recommends you a partner for a dating site. That object has no real state, but it does quite a lot of domain logic? Putting that into the service layer implies that the domain model cannot cover all logic.
Access to other domain objects. Can aggregates have access to a repository? Example: When a (stateful) domain object needs to have access to all 'users' of the system to perform its work, it would need access them via the repository. As a consequence, an ORM would need to inject the repository when loading the object (which might be technically more challenging). If objects can't have access to repositories, where would you put the domain logic for this example? In the service layer? Isn't the service layer supposed to have no logic?
Aggregates and entities should not talk to the outside world, they are only concerned about their bounded context. We should not inject external dependencies (like IPaymentGateway or IEmailService) into a domain object, this would cause the domain to handle exceptions that come from outside. Solution: an event based approach. How do you send events then? You still need to inject the correct 'listeners' every time you instantiate a domain object. ORM's are about restoring 'data' but are not primarly intended to inject dependencies. Do we need an DI-ORM mix?
Domain objects and DTO's. When you query an aggregate root for its state does it return a projection of its state (DTO) or the domain objects themselves? In most models that I see, clients have full access to the domain data model, introducing a deep coupling to the actual structure of the domain. I perceive the 'object graph' behind an aggregate to be its own buisness. That's encapsulation, right? So for me an aggregate root should return only DTO's. DTO's are often defined in the service layer but my approach is to model it in the domain itself. The service layer might still add another level of abstraction, but that's a different choice. Is that a good advice?
Repositories handle all CRUD operations at the aggregate root level. What about other queries? Queries return DTO's and not domain objects. For that to work, the repsitory must be aware of the data structure of the domain which introduces a coupling. My advice is similar to before: Use events to populate views. Thus, the internal structure is not made public, only the events carry the necessary data to build up the view.
Unit of work. A controller at the system boundary will instantiate commands and pass them to a service layer which in turn loads the appropriate aggregates and forwards the commands. The controller might use multiple commands and pass them to multiple services. This is all controlled by the unit of work pattern. This means, repositories, entities, services - all participate in the same transaction. Do you agree?
Buisness logic is not domain logic. From a buisness perspective the realization of a use case might involve many steps: Registering a customer, sending an email, create a storage account, etc. This overall process can impossibly fit in a domain aggregate root. The domain object would need to have access to all kind of infrastructure. Solution: Workflows or sagas (or transaction script). Is that a good advice?
Thank you
The first best practice I can suggest is to read the Evans' book. Twice.
Too many "DDD projects" fail because developers pretend that DDD is simply OOP done right.
Then, you should really understand that DDD is for applications that have to handle very complex business rules correctly. In a nutshell: if you don't need to pay a domain expert to understand the business, you don't need DDD. The core concept of DDD, indeed, is the ubiquitous language that both the coders, the experts and the users share to understand each other.
Furthermore, you should read and understand what aggregates are (consistency boundaries) by reading Effective Aggregate Design by Vernon.
Finally, you might find useful the modeling patterns documented here.
Despite my comment above, I took a stab at your points. (note: I'm not Eric Evans or Jimmy Nilsson so take my "advice" with a grain of salt).
Your example "Consider an object that recommends you a partner for a dating site.", belongs in a Domain service (not an infrastructure service). See this article here - http://lostechies.com/jimmybogard/2008/08/21/services-in-domain-driven-design/
Aggregates do not access repositories directly, but they can create a unit of work which combines operations from multiple domain objects into one.
Not sure on this one. This should really be a question by itself.
That's debatable, in theory, the domain entities would not be directly available outside the aggregate root, but that is not always practical. I consider this decision on a case-by-case basis.
I not sure what you mean exactly by "queries". If modeling all possible "reading" scenarios in your domain does not seem practical or provide sufficient performance, it suggests a CQRS solution is probably best.
Yes, I agree. UOW is a tool in your toolbox that you can use in various layers.
This statement is fundamentally wrong "Business logic is not domain logic". The domain IS the representation business logic, thus one reason for using ubiquitous language.

Do u start with db design or domain objects design in DDD?

Do the db design(tables) need to address concerns other than persistence of the domain model??
DDD (Domain-Driven Design) states that you are going to drive your design from Domain. Thus you don't care of database design (tables) - you are persistence ignorant.
As mentioned, DDD places the focus on the model while abstracting data access with persistence ignorance. I find this appropriate, however once you begin to design your aggregate roots and entities, it is difficult to escape data access concerns. Your entities may end up looking slightly different depending on whether you go for traditional SQL persistence, a document store, or event sourcing. The modeling process should be persistence agnostic and focus on the business domain alone leaving architectural concerns out. Take a look at this thread for discussion: http://tech.groups.yahoo.com/group/domaindrivendesign/message/23106

CRUD in domain driven design

To perform CRUD operation in domain driven design, do i need to create a domain service per root aggregate which will have store method, this method will call repository interface which have concrete implementation in infrastructure layer. Is this the correct approach. Please correct me if i am wrong.
I mostly agree:
The repository interfaces are part of the model layer and are implemented in the infrastructure layer. But keep in mind, that repositories are like collection and store complete objects. They are not modeled like a persistency layer and thus cannot store parts of aggregate roots. To construct complex aggregate roots a factory can be used.
Also remember that an effective design has to depend on the (persistence) technologies used.
CRUD doesn't work well with domain driven design. In domain driven design you work with verbs and nouns of the domain. Instead of "create a new order" you have a user aggregate root which "places an order". If your system is full of CRUD-operations, you are not utilizing domain driven design as it should be utilized, and instead you are just adding complexity to an otherwise simple problem.
An administration screen is a good candidate for CRUD. You have some list of some items, where addition or modification do not have business (domain) rules that need to be enforced. It's just plain "insert new row, modify that row, delete that row".
An order processing system is more complex, and will start to benefit from domain driven design. "Place an order". "Pay order". "When an order is placed and payment is done, start shipping process". These have complex rules that need to be modeled in the domain, and hence, domain driven design is a good candidate.

Resources