What causes this NameError? Python 3.x - python-3.x

My code is the IPRB problem from the web site rosalind.info. It works fine with the example data set values 2, 2, 2 for variables k, m, n. However when I change the variables for like 25, 25, 19. it gives this:
C:\Users\mNm\PycharmProjects\PySummer\venv\Scripts\python.exe C:/Users/mNm/PycharmProjects/PySummer/venv/Scripts/IPRB.py
Traceback (most recent call last):
File "C:/Users/mNm/PycharmProjects/PySummer/venv/Scripts/IPRB.py", line 43, in <module>
pr3 = float(pr31 + pr32 + pr33)
NameError: name 'pr31' is not defined
Process finished with exit code 1
I couldn't find anything to try and I don't know what is causing the problem.
Thanks by now.
k = 2
m = 2
n = 2
whole = k + m + n
org = [k, m, n]
for i in org:
if i == k:
k_start = float(k/whole)
for j in org:
if j == k:
pr11 = float(k_start * ((k - 1) / (whole - 1)))
if j == m:
pr12 = float(k_start * (m / (whole - 1)))
if j == n:
pr13 = float(k_start * (n / (whole - 1)))
pr1 = float(pr11 + pr12 + pr13)
if i == m:
m_start = float(m/whole)
for j in org:
if j == k:
pr21 = float(m_start * (k / (whole - 1)))
if j == m:
pr22 = float(m_start * ((m - 1) / (whole - 1)) * 0.75)
if j == n:
pr23 = float(m_start * (n / (whole - 1)) * 0.5)
pr2 = float(pr21 + pr22 + pr23)
if i == n:
n_start = float(n / whole)
for j in org:
if j == k:
pr31 = float(n_start * (k / (whole - 1)))
if j == m:
pr32 = float(n_start * (m / (whole - 1)) * 0.5)
if j == n:
pr33 = float(n_start * ((n - 1) / (whole - 1)) * 0)
pr3 = float(pr31 + pr32 + pr33)
dom_pr = float(pr1 + pr2 + pr3)
print(dom_pr)

You only define pr31 if i==n and some value in org is equal to k.

Related

How do I use multithreading on this function for a np.meshgrid of values?

The following code generates numpy 2D lists of r and E values for the specified intervals.
r = np.linspace(3, 14, 10)
E = np.linspace(0.05, 0.75, 10)
r, E = np.meshgrid(r, E)
I am then using the following nested loop to generate output from the function ionisationGamma for each r and E interval value.
for ridx in trange(len(r)):
z = []
for cidx in range(len(r[ridx])):
z.append(ionisationGamma(r[ridx][cidx], E[ridx][cidx]))
Z.append(z)
Z = np.array(Z)
This loop gives me a 2D numpy array Z, which is my output and I am using it for a 3D graph. The problem with it is: it is taking ~6 hours to generate the output for all these intervals as there are so many values due to np.meshgrid. I have just discovered multi-threading in Python and wanted to know how I can implement this by using it. Any help is appreciated.
See below code for ionisationGamma
def ionisationGamma(r, E):
I = complex(0.1, 1.0)
a_soft = 1.0
omega = 0.057
beta = 0.0
dt = 0.1
steps = 10000
Nintervals = 60
N = 3000
xmin = float(-300)
xmax = -xmin
x = [0.0]*N
dx = (xmax - xmin) / (N - 1)
L = dx * N
dk = 2 * M_PI / L
propagator = None
in_, out_, psi0 = None, None, None
in_ = [complex(0.,0.)] * N
psi0 = [complex(0.,0.)] * N
out_ = [[complex(0.,0.)]*N for i in range(steps+1)]
overlap = exp(-r) * (1 + r + (1 / 3) * pow(r, 2))
normC = 1 / (sqrt(2 * (1 + overlap)))
gammai = 0.5
qi = 0.0 + (r / 2)
pi = 0.0
gammai1 = 0.5
gammai2 = 0.5
qi1 = 0.0 - (r / 2)
qi2 = 0.0 + (r / 2)
pi1 = 0.0
pi2 = 0.0
# split initial wavepacket
for i in range(N):
x[i] = xmin + i * dx
out_[0][i] = (normC) * ((pow(gammai1 / M_PI, 1. / 4.) * exp(complex(-(gammai1 / 2.) * pow(x[i] - qi1, 2.), pi1 * (x[i] - qi1)))) + (pow(gammai2 / M_PI, 1. / 4.) * exp(complex(-(gammai2 / 2.) * pow(x[i] - qi2, 2.), pi2 * (x[i] - qi2)))))
in_[i] = (normC) * ((pow(gammai1 / M_PI, 1. / 4.) * exp(complex(-(gammai1 / 2.) * pow(x[i] - qi1, 2.), pi1 * (x[i] - qi1)))) + (pow(gammai2 / M_PI, 1. / 4.) * exp(complex(-(gammai2 / 2.) * pow(x[i] - qi2, 2.), pi2 * (x[i] - qi2)))))
psi0[i] = in_[i]
for l in range(1, steps+1):
for i in range(N):
propagator = exp(complex(0, -potential(x[i], omega, beta, a_soft, r, E, dt, l) * dt / 2.))
in_[i] = propagator * in_[i];
in_ = np.fft.fft(in_, N)
for i in range(N):
k = dk * float(i if i < N / 2 else i - N)
propagator = exp(complex(0, -dt * pow(k, 2) / (2.)))
in_[i] = propagator * in_[i]
in_ = np.fft.ifft(in_, N)
for i in range(N):
propagator = exp(complex(0, -potential(x[i], omega, beta, a_soft, r, E, dt, l) * dt / 2.))
in_[i] = propagator * in_[i]
out_[l][i] = in_[i]
initialGammaCentre = 0.0
finalGammaCentre = 0.0
for i in range(500, 2500 +1):
initialGammaCentre += pow(abs(out_[0][i]), 2) * dx
finalGammaCentre += pow(abs(out_[steps][i]), 2) * dx
ionisationGamma = finalGammaCentre / initialGammaCentre
return ionisationGamma
def potential(x, omega, beta, a_soft, r, E, dt, l):
V = (-1. / sqrt((x - (r / 2)) * (x - (r / 2)) + a_soft * a_soft)) + ((-1. / sqrt((x + (r / 2)) * (x + (r / 2)) + a_soft * a_soft))) + E * x
return V
Since the question is about how to use multiprocessing, the following code will work:
import multiprocessing as mp
if __name__ == '__main__':
with mp.Pool(processes=16) as pool:
Z = pool.starmap(ionisationGamma, arguments)
Z = np.array(Z)
Where the arguments are:
arguments = list()
for ridx in range(len(r)):
for cidx in range(len(r[ridx])):
arguments.append((r[ridx][cidx], E[ridx][cidx]))
I am using starmap instead of map, since you have multiple arguments that you want to unpack. This will divide the arguments iterable over multiple cores, using the ionisationGamma function and the final result will be ordered.
However, I do feel the need to say that the main solution is not really the multiprocessing but the original function code. In ionisationGamma you are using several times the slow python for loops. And it would benefit your code a lot if you could vectorize those operations.
A second observation is that you are using many of those loops separately and it would be nice if you could separate that one big function into multiple smaller functions. Then you can time every function individually and speed up those that are too slow.

Python: recursive method returns different results when it is a class method

I have a recursive function that works as expected when it is a standalone function
def drip2(n,
i: float = 0.0,
j: float = 0.0) -> float:
return ((1 + i * (1 + j) ** (n - 1) / 4) ** 4 * drip2(n - 1)
if n > 1 else (1 + i / 4) ** 4)
drip2(0, 0.0067, 0.2) = drip2(1, 0.0067, 0.2) -> 1.0067168525555594
drip2(2, 0.0067, 0.2) -> 1.0080642730987266
However, when I wrap it in a class, the results differ.
class TestDrip:
def __init__(self,
i: float = 0.0,
j: float = 0.0) -> None:
self.i = i
self.j = j
def drip(self,
n) -> float:
return ((1 + self.i * (1 + self.j) ** (n - 1) / 4) ** 4 * self.drip(n - 1)
if n > 1 else (1 + self.i / 4) ** 4)
TestDrip(0.0067, 0.2).drip(1) = TestDrip(0.0067, 0.2).drip(1) -> 1.0067168525555594
TestDrip(0.0067, 0.2).drip(2) -> 1.014835292187658
Once the integer n is greater than or equal to 2, the result deviate. I am on Python 3.7.7.
In the definition of drip2, the recursive call you are doing is:
drip2(n - 1)
which is equivalent to:
drip2(n - 1, 0, 0)
while in the method drip, the recursive call is:
self.drip(n - 1)
Since self refers to the same instance, self.i and self.j will stay at the same value throughout all recursive calls, while they are set to 0 starting from the first recursive call in your function definition.

Count the number of possible ways to solve an equation

This question was asked in a challenge in HackerEarth:
Mark is solving an interesting question. He needs to find out number
of distinct ways such that
(i + 2*j+ k) % (x + y + 2*z) = 0, where 1 <= i,j,k,x,y,z <= N
Help him find it.
Constraints:
1<= T<= 10
1<=N<= 1000
Input Format:
First line contains T, the number of test cases. Each of the test case
contains a single integer,N in a separate line.
Output Format:
For each test case , output in a separate line, the number of distinct
ways.
Sample Input
2
1
2
Sample Output
1
15
Explanation
In the first case, the only possible way is i = j = k = x =y = z = 1
I am not getting any way how to solve this problem, I have tried one and I know it's not even close to the question.
import random
def CountWays (N):
# Write your code here
i = random.uniform(1,N)
j = random.uniform(1,N)
k = random.uniform(1,N)
x = random.uniform(1,N)
y = random.uniform(1,N)
z = random.uniform(1,N)
d = 0
for i in range(N):
if (i+2*j+k)%(x+y+2*z)==0:
d += 1
return d
T = int(input())
for _ in range(T):
N = int(input())
out_ = CountWays(N)
print (out_)
My Output
0
0
Instead it should give the output
1
15
The value of the numerator (num) can range from 4 to 4N. The value of the denominator (dom) can range from 4 to num. You can split your problem into two smaller problems: 1) How many values of the denominator is a given value of the numerator divisible by? 2) How many ways can a given denominator and numerator be constructed?
To answer 1) we can simply loop through all the possible values of the numerator, then loop over all the values of the denominator where numerator % denominator == 0. To answer 2) we can find all the partitions of the numerator and denominator that satisfies the equality and constraints. The number of ways to construct a given numerator and denominator will be the product of the number of partitions of each.
import itertools
def divisible_numbers(n):
"""
Get all numbers with which n is divisible.
"""
for i in range(1,n+1):
if n % i == 0:
yield i
if i >= n:
break
def get_partitions(n):
"""
Generate ALL ways n can be partitioned into 3 integers.
Modified from http://code.activestate.com/recipes/218332-generator-for-integer-partitions/#c9
"""
a = [1]*n
y = -1
v = n
while v > 0:
v -= 1
x = a[v] + 1
while y >= 2 * x:
a[v] = x
y -= x
v += 1
w = v + 1
while x <= y:
a[v] = x
a[w] = y
if w == 2:
yield a[:w + 1]
x += 1
y -= 1
a[v] = x + y
y = a[v] - 1
if w == 3:
yield a[:w]
def get_number_of_valid_partitions(num, N):
"""
Get number of valid partitions of num, given that
num = i + j + 2k, and that 1<=i,j,k<=N
"""
n = 0
for partition in get_partitions(num):
# This can be done a bit more cleverly, but makes
# the code extremely complicated to read, so
# instead we just brute force the 6 combinations,
# ignoring non-unique permutations using a set
for i,j,k in set(itertools.permutations(partition)):
if i <= N and j <= N and k <= 2*N and k % 2 == 0:
n += 1
return n
def get_number_of_combinations(N):
"""
Get number of ways the equality can be solved under the given constraints
"""
out = 0
# Create a dictionary of number of valid partitions
# for all numerator values we can encounter
n_valid_partitions = {i: get_number_of_valid_partitions(i, N) for i in range(1,4*N+1)}
for numerator in range(4,4*N+1):
numerator_permutations = n_valid_partitions[numerator]
for denominator in divisible_numbers(numerator):
denominator_permutations = n_valid_partitions[denominator]
if denominator < 4:
continue
out += numerator_permutations * denominator_permutations
return out
N = 2
out = get_number_of_combinations(N)
print(out)
The scaling of the code right now is very poor due to the way the get_partitions and the get_number_of_valid_partitions functions interact.
EDIT
The following code is much faster. There's a small improvement to divisible_numbers, but the main speedup lies in get_number_of_valid_partitions not creating a needless amount of temporary lists as it has now been joined with get_partitions in a single function. Other big speedups comes from using numba. The code of get_number_of_valid_partitions is all but unreadable now, so I've added a much simpler but slightly slower version named get_number_of_valid_partitions_simple so you can understand what is going on in the complicated function.
import numba
#numba.njit
def divisible_numbers(n):
"""
Get all numbers with which n is divisible.
Modified from·
"""
# We can save some time by only looking at
# values up to n/2
for i in range(4,n//2+1):
if n % i == 0:
yield i
yield n
def get_number_of_combinations(N):
"""
Get number of ways the equality can be solved under the given constraints
"""
out = 0
# Create a dictionary of number of valid partitions
# for all numerator values we can encounter
n_valid_partitions = {i: get_number_of_valid_partitions(i, N) for i in range(4,4*N+1)}
for numerator in range(4,4*N+1):
numerator_permutations = n_valid_partitions[numerator]
for denominator in divisible_numbers(numerator):
if denominator < 4:
continue
denominator_permutations = n_valid_partitions[denominator]
out += numerator_permutations * denominator_permutations
return out
#numba.njit
def get_number_of_valid_partitions(num, N):
"""
Get number of valid partitions of num, given that
num = i + j + 2l, and that 1<=i,j,l<=N.
"""
count = 0
# In the following, k = 2*l
#There's different cases for i,j,k that we can treat separately
# to give some speedup due to symmetry.
#i,j can be even or odd. k <= N or N < k <= 2N.
# Some combinations only possible if num is even/odd
# num is even
if num % 2 == 0:
# i,j odd, k <= 2N
k_min = max(2, num - 2 * (N - (N + 1) % 2))
k_max = min(2 * N, num - 2)
for k in range(k_min, k_max + 1, 2):
# only look at i<=j
i_min = max(1, num - k - N + (N + 1) % 2)
i_max = min(N, (num - k)//2)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
# if i == j, only one permutations
# otherwise two due to symmetry
if i == j:
count += 1
else:
count += 2
# i,j even, k <= N
# only look at k<=i<=j
k_min = max(2, num - 2 * (N - N % 2))
k_max = min(N, num // 3)
for k in range(k_min, k_max + 1, 2):
i_min = max(k, num - k - N + N % 2)
i_max = min(N, (num - k) // 2)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
if i == j == k:
# if i == j == k, only one permutation
count += 1
elif i == j or i == k or j == k:
# if only two of i,j,k are the same there are 3 permutations
count += 3
else:
# if all differ, there are six permutations
count += 6
# i,j even, N < k <= 2N
k_min = max(N + 1 + (N + 1) % 2, num - 2 * N)
k_max = min(2 * N, num - 4)
for k in range(k_min, k_max + 1, 2):
# only look for i<=j
i_min = max(2, num - k - N + 1 - (N + 1) % 2)
i_max = min(N, (num - k) // 2)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
if i == j:
# if i == j, only one permutation
count += 1
else:
# if all differ, there are two permutations
count += 2
# num is odd
else:
# one of i,j is even, the other is odd. k <= N
# We assume that j is odd, k<=i and correct the symmetry in the counts
k_min = max(2, num - 2 * N + 1)
k_max = min(N, (num - 1) // 2)
for k in range(k_min, k_max + 1, 2):
i_min = max(k, num - k - N + 1 - N % 2)
i_max = min(N, num - k - 1)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
if i == k:
# if i == j, two permutations
count += 2
else:
# if i and k differ, there are four permutations
count += 4
# one of i,j is even, the other is odd. N < k <= 2N
# We assume that j is odd and correct the symmetry in the counts
k_min = max(N + 1 + (N + 1) % 2, num - 2 * N + 1)
k_max = min(2 * N, num - 3)
for k in range(k_min, k_max + 1, 2):
i_min = max(2, num - k - N + (N + 1) % 2)
i_max = min(N, num - k - 1)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
count += 2
return count
#numba.njit
def get_number_of_valid_partitions_simple(num, N):
"""
Simpler but slower version of 'get_number_of_valid_partitions'
"""
count = 0
for k in range(2, 2 * N + 1, 2):
for i in range(1, N + 1):
j = num - i - k
if 1 <= j <= N:
count += 1
return count
if __name__ == "__main__":
N = int(sys.argv[1])
out = get_number_of_combinations(N)
print(out)
The current issue with your code is that you've picked random numbers once, then calculate the same equation N times.
I assume you wanted to generate 1..N for each individual variable, which would require 6 nested loops from 1..N, for each variable
Now, that's the brute force solution, which probably fails on large N values, so as I commented, there's some trick to find the multiples of the right side of the modulo, then check if the left side portion is contained in that list. That would only require two triple nested lists, I think
(i + 2*j+ k) % (x + y + 2*z) = 0, where 1 <= i,j,k,x,y,z <= N
(2*j + i + k) is a multiple of (2*z + x + y)
N = 2
min(2*j + i + k) = 4
max(2*j + i + k) = 8
ways to make 4: 1 * 1 = 1
ways to make 5: 2 * 2 = 4
ways to make 6: 2 * 2 = 4
ways to make 7: 2 * 2 = 4
ways to make 8: 1 * 1 = 1
Total = 14
But 8 is a multiple of 4 so we add one more instance for a total of 15.

Recursion in Python/Merge Sort/Call by Reference

My apologies, I'm new to StackOverFlow & Python. I've written a code for Merge_Sort but it's not running as the values of arrays are getting lost while returning from recursion calls.
Coding Environment: Python3.x
OS: Linux ( Ubuntu 18.04)
Below is my code:
class sort:
def __init__(self, arr, n):
self.arr = arr
self.n = n
def __init__(self, arr, m, n):
self.arr = arr
self.m = m
self.n = n
arrS = arr.copy()
arrL = [0] * (n - int((m + n)/2) + 1)
arrR = [0] * (n - (m + 1))
def Merge_sort(self,arr,first,last):
mid = int((first + last) / 2)
arrMain = arr[first:last+1]
arrLeft = arr[first:mid+1]
arrRight = arr[mid+1:last+1]
arrL = [0] * (mid - first + 1)
arrR = [0] * (last - mid + 1)
arrN = [0] * ( last - first + 1)
if first < last:
#Sort Left Array
self.Merge_sort(arr, first, mid)
#Sort Right Array
self.Merge_sort(arr, mid+1, last)
#I defined the below 3 variables while debugging to view the list
arrL = arr[first:mid+1]
arrR = arr[mid+1:last+1]
print("Left Array: " + str(arrL))
print("Right Array: " + str(arrR))
x = len(arrL)
y = len(arrR)
i = j = k = 0
while i < x and j < y:
if (arrL[i] <= arrR[j]):
arrN[k] = arrL[i]
i += 1
else:
arrN[k] = arrR[j]
j += 1
# end-if#001
k += 1
while (i < x):
arrN[k] = arrL[i]
i += 1
k += 1
while (j < y):
arrN[k] = arrR[j]
j += 1
k += 1
arr = arrN.copy()
print("Merged Array:" + str(arr))
return arrN
#End-if#001
from Sort import sort
arr = [7, 5, 4 ,9, 3, 2 , 0, 1, 6, 8]
n = 0
sort4 = sort(arr, 0, int(len(arr)))
sort4.arr = arr.copy()
sort4.Merge_sort(sort4.arr, 0, int(len(arr)) - 1)
Input of the program: arr = [7, 5, 4 ,9, 3, 2 , 0, 1, 6, 8]
Output of the program: Left Array: [7, 5, 4, 9, 3] Right Array: [2, 0, 1, 6, 8]
Merged Array:[2, 0, 1, 6, 7, 5, 4, 8, 9, 3]
At the end of program it just seems to merge my original array.
Kindly suggest.
Just to notify you, the problem is resolved. I wasn't returning the values correctly. Below is my code just for the reference.
def Merge_sort(self,arr,first,last):
mid = int((first + last) / 2)
arrMain = arr[first:last+1]
arrLeft = arr[first:mid+1]
arrRight = arr[mid+1:last+1]
arrL = [0] * (mid - first + 1)
arrR = [0] * (last - mid + 1)
arrN = [0] * ( last - first + 1)
if first < last:
#Sort Left Array
arrL = self.Merge_sort(arr, first, mid)
#Sort Right Array
arrR = self.Merge_sort(arr, mid+1, last)
#arrL = arr[first:mid+1]
#arrR = arr[mid+1:last+1]
print("Left Array: " + str(arrL))
print("Right Array: " + str(arrR))
x = int(len(arrL))
y = int(len(arrR))
i = j = k = 0
while i < x and j < y:
if (arrL[i] <= arrR[j]):
arrN[k] = arrL[i]
i += 1
else:
arrN[k] = arrR[j]
j += 1
# end-if#001
k += 1
while (i < x):
arrN[k] = arrL[i]
i += 1
k += 1
while (j < y):
arrN[k] = arrR[j]
j += 1
k += 1
arr = arrN.copy()
print("Merged Array:" + str(arr))
return arrN
#End-if#001
return arrMain

Total Possible Paths in a Square Grid when diagonal movement is allowed

How should I answer this-"Compute the total number of possible paths from (0,0) to (7,9) if the steps R (to the right) and U (up) are allowed, along with the diagonal step D:(x,y)→(x +1,y+ 1)"
Edit: added calculation for arbitrary cell, not only diagonal one.
The number of ways on square grid is known as Delannoy number, for (n,n) cell sequence is 1, 3, 13, 63, 321, 1683, 8989...
There is simple natural recurrence
D(m, n) = D(m-1, n) + D(m, n-1) + D(m-1,n-1)
that might be used to calculate values rather quickly for reasonable argument values (table approach, O(nm) operations including long summation).
"Closed formula"
D(m, n) = Sum[k=0..min(n, m)] {C(m + n - k, m) * C(m, k)}
for effective implementations requires table of binomial coefficients
#2D table quadratic approach
def PathsInSqGrid(n, m):
D = [[0 for x in range(m+1)] for y in range(n+1)]
for i in range(n+1):
D[i][0] = 1
for i in range(m+1):
D[0][i] = 1
for i in range(1, n+1):
for j in range(1,m+1):
D[i][j] = D[i][j-1] + D[i-1][j] + D[i-1][j-1]
return D[n][m]
def NCr(n, k):
result = 1
if k > n - k:
k = n - k
for i in range (1, k + 1):
result = (result * (n - i + 1)) // i
return result
#closed formula
def PathsCF(n, m):
#D(m, n) = Sum[k=0..min(n, m)] {C(m + n - k, m) * C(m, k)}
res = 0
for k in range(0, min(n, m) + 1):
res += NCr(m + n - k, m) *NCr(m, k)
return res
print(PathsInSqGrid(7, 9))
print(PathsCF(7, 9))
>>>
224143
224143
Wiki also shows two so-called "closed formulas" for central Delannoy numbers (while I believe that closed formula should be single expression without loop of length n):
D(n) = Sum[k=0..n]{C(n,k)*C(n+k,k)}
D(n) = Sum[k=0..n]{C(n,k)^2 * 2^n}
and recurrence (looks simple, linear complexity, but real implementation requires division of long number by short one)
n*D(n) = 3*(2*n-1) * D(n-1) - (n-1)*D(n-2)
and generating function
Sum[n=0..Inf]{D(n)*x^n} = 1/Sqrt(1 - 6 * x + x^2) = 1 + 3x + 13x^2 + 63x^3 +...
Code
#central Delannoy numbers
#2D table quadratic approach
#linear approach for diagonal cell (n,n)
def PathsInSqGridLin(n):
if n < 2:
return 2 * n + 1
A, B = 1, 3
for i in range(2, n + 1):
B, A = (3 * (2 * i - 1) * B - (i - 1) * A) // i, B
return B
print(PathsInSqGridLin(3))
print(PathsInSqGridLin(100))
>>
63
2053716830872415770228778006271971120334843128349550587141047275840274143041

Resources