Custom metric for Semantic segmentation - python-3.x

I am working on a multi-class semantic segmentation task, and would like to define a custom, weighted metric for calculating how well my NN is performing.
I am using U-net to segment my image into one of 8 classes, of which 1-7 are the particular classes and 0 is background. How do I use the standard custom metric template defined on the Keras metrics page, so that I only get the IoU of only channels 1-7, multiplied by a (1,7) weights array? I tried removing the background channel in the custom metric by using
y_true, y_pred = y_true[1:,:,:], y_pred[1:, :,:]
but it does not look like that's what I want. Any help will be appreciated.

The change that was necessary
def dice_coef_multilabel(y_true, y_pred, numLabels=CLASSES):
dice=0
for index in range(numLabels):
dice -= dice_coef(y_true[:,:,index], y_pred[:,:,index])
return dice
If needed, the dice coeff can be calcualted across channels by using two nested loops to loop over all the channel combinations. I'm also including the dice coefficient calculation.
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
FWIW, this github link has various types of metrics were implemented in a channel-wise manner.

Related

How to calculate unbalanced weights for BCEWithLogitsLoss in pytorch

I am trying to solve one multilabel problem with 270 labels and i have converted target labels into one hot encoded form. I am using BCEWithLogitsLoss(). Since training data is unbalanced, I am using pos_weight argument but i am bit confused.
pos_weight (Tensor, optional) – a weight of positive examples. Must be a vector with length equal to the number of classes.
Do i need to give total count of positive values of each label as a tensor or they mean something else by weights?
The PyTorch documentation for BCEWithLogitsLoss recommends the pos_weight to be a ratio between the negative counts and the positive counts for each class.
So, if len(dataset) is 1000, element 0 of your multihot encoding has 100 positive counts, then element 0 of the pos_weights_vector should be 900/100 = 9. That means that the binary crossent loss will behave as if the dataset contains 900 positive examples instead of 100.
Here is my implementation:
(new, based on this post)
pos_weight = (y==0.).sum()/y.sum()
(original)
def calculate_pos_weights(class_counts):
pos_weights = np.ones_like(class_counts)
neg_counts = [len(data)-pos_count for pos_count in class_counts]
for cdx, pos_count, neg_count in enumerate(zip(class_counts, neg_counts)):
pos_weights[cdx] = neg_count / (pos_count + 1e-5)
return torch.as_tensor(pos_weights, dtype=torch.float)
Where class_counts is just a column-wise sum of the positive samples. I posted it on the PyTorch forum and one of the PyTorch devs gave it his blessing.
Maybe is a little late, but here is how I calculate the same. Looking into the documentation:
For example, if a dataset contains 100 positive and 300 negative examples of a single class, then pos_weight for the class should be equal to 300/100 = 3.
So an easy way to calcule the positive weight is using the tensor methods with your label vector "y", in my case train_dataset.data.y. And then calculating the total negative labels.
num_positives = torch.sum(train_dataset.data.y, dim=0)
num_negatives = len(train_dataset.data.y) - num_positives
pos_weight = num_negatives / num_positives
Then the weights can be used easily as:
criterion = torch.nn.BCEWithLogitsLoss(pos_weight = pos_weight)
PyTorch solution
Well, actually I have gone through docs and you can simply use pos_weight indeed.
This argument gives weight to positive sample for each class, hence if you have 270 classes you should pass torch.Tensor with shape (270,) defining weight for each class.
Here is marginally modified snippet from documentation:
# 270 classes, batch size = 64
target = torch.ones([64, 270], dtype=torch.float32)
# Logits outputted from your network, no activation
output = torch.full([64, 270], 0.9)
# Weights, each being equal to one. You can input your own here.
pos_weight = torch.ones([270])
criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
criterion(output, target) # -log(sigmoid(0.9))
Self-made solution
When it comes to weighting, there is no built-in solution, but you may code one yourself really easily:
import torch
class WeightedMultilabel(torch.nn.Module):
def __init__(self, weights: torch.Tensor):
self.loss = torch.nn.BCEWithLogitsLoss()
self.weights = weights.unsqueeze()
def forward(outputs, targets):
return self.loss(outputs, targets) * self.weights
Tensor has to be of the same length as the number of classes in your multilabel classification (270), each giving weight for your specific example.
Calculating weights
You just add labels of every sample in your dataset, divide by the minimum value and inverse at the end.
Sort of snippet:
weights = torch.zeros_like(dataset[0])
for element in dataset:
weights += element
weights = 1 / (weights / torch.min(weights))
Using this approach class occurring the least will give normal loss, while others will have weights smaller than 1.
It might cause some instability during training though, so you might want to experiment with those values a little (maybe log transform instead of linear?)
Other approach
You may think about upsampling/downsampling (though this operation is complicated as you would add/delete other classes as well, so advanced heuristics would be needed I think).
Just to provide a quick revision on #crypdick's answer, this implementation of the function worked for me:
def calculate_pos_weights(class_counts,data):
pos_weights = np.ones_like(class_counts)
neg_counts = [len(data)-pos_count for pos_count in class_counts]
for cdx, (pos_count, neg_count) in enumerate(zip(class_counts, neg_counts)):
pos_weights[cdx] = neg_count / (pos_count + 1e-5)
return torch.as_tensor(pos_weights, dtype=torch.float)
Where data is the dataset you're trying to apply weights to.

Keras: Pixelwise class imbalance in binary image segmentation

I have a task in which I input a 500x500x1 image and get out a 500x500x1 binary segmentation. When working, only a small fraction of the 500x500 should be triggered (small "targets"). I'm using a sigmoid activation at the output. Since such a small fraction is desired to be positive, the training tends to stall with all outputs at zero, or very close. I've written my own loss function that partially deals with it, but I'd like to use binary cross entropy with a class weighting if possible.
My question is in two parts:
If I naively apply binary_crossentropy as the loss to my 500x500x1 output, will it apply on a per pixel basis as desired?
Is there a way for keras to apply class weighting with the single sigmoid output per pixel?
To answer your questions.
Yes, binary_cross_entropy will work per-pixel based, provided you feed to your image segmentation neural network pairs of the form (500x500x1 image(grayscale image) + 500x500x1 (corresponding mask to your image).
By feeding the parameter 'class_weight' parameter in model.fit()
Suppose you have 2 classes with 90%-10% distribution. Then you may want to penalise your algorithm 9 times more when it makes a mistake for the less well represented class(the class with 10% in this case). Suppose you have 900 examples of class 1 and 100 examples of class 2.
Then your class weights dictionary(there are multiple ways to compute it, what is important is to assign a greater weight to the less well represented class),
class_weights = {0:1000/900,1:1000/100}
Example : model.fit(X_train, Y_train, epochs = 30, batch_size=32, class_weight=class_weight)
NOTE: This is available only on 2d cases(class_weight). For 3D or higher dimensional spaces, one should use 'sample_weights'. For segmentation purposes, you would rather use sample_weights parameter.
The biggest gain you will have is by means of other loss functions. Other losses, apart from binary_crossentropy and categorical_crossentropy, inherently perform better on unbalanced datasets. Dice Loss is such a loss function.
Keras implementation:
smooth = 1.
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return 1 - dice_coef(y_true, y_pred)
You can also use as a loss function the sum of binary_crossentropy
and other losses if it suits you : i.e. loss = dice_loss + bce

How to calculate RMSPE in python using numpy

I am doing a multivariate forecasting using the Rossmann dataset. I now need to use the RMSPE metric to evaluate my model. I saw the relevant formula here. But I am not sure how to efficiently implement this using numpy. Any help is much appreciated.
You can take advantage of numpy's vectorisation capability for an error metric like this. The following function can be used to compute RMSPE:
def rmse(y_true, y_pred):
'''
Compute Root Mean Square Percentage Error between two arrays.
'''
loss = np.sqrt(np.mean(np.square(((y_true - y_pred) / y_true)), axis=0))
return loss
(For the error between vectors, axis=0 makes it explicit that the error is computed row-wise, returning a vector. It isn't required, as this is the default behaviour for np.mean.)
It should be normalized by ground truths.
RMSPE equation
def rmspe(y_true, y_pred):
return np.sqrt(np.nanmean(np.square(((y_true - y_pred) / y_true))))*100

How to define precision as loss Function in Keras?

It’s known that sparse_categorical_crossentropy in keras can get the average loss function among each category. But what if only one certain category was I concerned most? Like if I want to define the precision(=TP/(TP+FP)) based on this category as loss function, how can I write it? Thanks!
My codes were like:
from keras import backend as K
def my_loss(y_true,y_pred):
y_true = K.cast(y_true,"float32")
y_pred = K.cast(K.argmax(y_pred),"float32")
nominator = K.sum(K.cast(K.equal(y_true,y_pred) & K.equal(y_true, 0),"float32"))
denominator = K.sum(K.cast(K.equal(y_pred,0),"float32"))
return -(nominator + K.epsilon()) / (denominator + K.epsilon())
And the error is like:
argmax is not differentiable
I don't recommend you to use precision as the loss function.
It is not differentiable that can't be set as a loss function for nn.
you can max it by predicting all the instance as class negative, that makes no sense.
One of the alternative solution is using F1 as the loss function, then tuning the probability cut-off manually for obtaining a desirable level of precision as well as recall is not too low.
You can pass to the fit method a parameter class_weight where you determine which classes are more important.
It should be a dictionary:
{
0: 1, #class 0 has weight 1
1: 0.5, #class 1 has half the importance of class 0
2: 0.7, #....
...
}
Custom loss
If that is not exactly what you need, you can create loss functions like:
import keras.backend as K
def customLoss(yTrue,yPred):
create operations with yTrue and yPred
- yTrue = the true output data (equal to y_train in most examples)
- yPred = the model's calculated output
- yTrue and yPred have exactly the same shape: (batch_size,output_dimensions,....)
- according to the output shape of the last layer
- also according to the shape of y_train
all operations must be like +, -, *, / or operations from K (backend)
return someResultingTensor
You cannot used argmax as it is not differentiable. That means that backprop will not work if loss function can't be differentiated.
Instead of using argmax, do y_true * y_pred.

How to use weighted categorical crossentropy on FCN (U-Net) in Keras?

I have built a Keras model for image segmentation (U-Net). However in my samples some misclassifications (areas) are not that important, while other are crucial, so I want to assign higher weight in loss function to them. To complicate things further, I would like some misclassifications (class 1 instead of 2) to have very high penalty while inverse (class 2 instead of 1) shouldn't be penalized that much.
The way I see it, I need to use a sum (across all of the pixels) of weighted categorical crossentropy, but the best I could find is this:
def w_categorical_crossentropy(y_true, y_pred, weights):
nb_cl = len(weights)
final_mask = K.zeros_like(y_pred[:, 0])
y_pred_max = K.max(y_pred, axis=1)
y_pred_max = K.reshape(y_pred_max, (K.shape(y_pred)[0], 1))
y_pred_max_mat = K.cast(K.equal(y_pred, y_pred_max), K.floatx())
for c_p, c_t in product(range(nb_cl), range(nb_cl)):
final_mask += (weights[c_t, c_p] * y_pred_max_mat[:, c_p] * y_true[:, c_t])
return K.categorical_crossentropy(y_pred, y_true) * final_mask
However this code only works with a single prediction and my knowledge of Keras inner workings is lacking (and math side of it is not much better). Anyone know how I can adapt it, or even better, is there a ready-made loss function which would suit my case?
I would appreciate some pointers.
EDIT: my question is similar to How to do point-wise categorical crossentropy loss in Keras?, except that I would like to use weighted categorical crossentropy.
You can use weight maps (as proposed in the U-Net paper). In those weight maps, you can weight regions with more weight or less weight. Here is some pseudocode:
loss = compute_categorical_crossentropy()
weighted_loss = loss * weight_map # using element-wise multiplication

Resources