Setting precision in python3 - python-3.x

I want to set precision of a long float number to 2 decimal places. Rounding the number, truncating, floor,etc. won't work. For example my number is 5.196152422706632 . I want it as 5.19 and not 5 or 5.2,etc. I want to simply remove all other digits. How should i do it?

Related

What is the function of round() with this strange behavior? [duplicate]

This question already has answers here:
Python 3.x rounding behavior
(13 answers)
Closed 3 years ago.
I want to round some int numbers but I came across with the strange feature of round() for example
round(2.1) = 2
round(2.5) = 2 #it rounds to ceil
round(2.7) = 3
it rounds differently with the odd number as follow
round(5.1) = 5
round(5.5) = 6 #it rounds to floor
round(5.7) = 6
it rounds the X.5 to the floor with the x = even numbers but with the X = odd numbers it rounds to the ceil
I want to ask what is the advantage of this round? and where can I use it in our examples ? or what is its usage?
Looks like if it's close it goes to the even option.
From the documentation https://docs.python.org/3/library/functions.html#round
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns the nearest integer to its input.
For the built-in types supporting round(), values are rounded to the closest multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example, both round(0.5) and round(-0.5) are 0, and round(1.5) is 2). Any integer value is valid for ndigits (positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise the return value has the same type as number.
For a general Python object number, round delegates to number.round.
Note The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives 2.67 instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be represented exactly as a float. See Floating Point Arithmetic: Issues and Limitations for more information.

Restrict floats to allotted padding while parsing as string

I would like to print a series of floats with varying amounts of numbers to the left of the decimal place. I would like these numbers to exactly fill a padding with blank spaces, digits, and a decimal point.
Paraphrasing the data and code I have now
floats = [321.1234561, 21.1234561, 1.1234561, 0.123456, 0.02345, 0.0034, 0.0004567]
for number in floats:
print('{:>8.6f}'.format(number))
This outputs
321.123456
21.123456
1.123456
0.123456
0.02345
0.0034
0.000457
I am looking for a way to print the following in a for loop assuming I don't know the amount of digits that will be to the left of the decimal place and the number of digits to the left never exceeds the padding which is 8 for this example.
321.1234
21.12345
1.123456
0.123456
0.02345
0.0034
0.000457
Similar questions have been asked about printing floating points with a certain width but the width they were talking about appeared to be the precision rather than the total number of character used to print the number.
Edit:
I have added a number to the end of the list for the following reason. The use of the specifier 'g' with 7 significant figures was recommended by attdona. This prevents the padding from being exceeded for numbers greater than or equal to 1 but not for numbers less than 1 with precision greater than 6. Using {:>8.7g} instead gives
321.1234
21.12345
1.123456
0.123456
0.02345
0.0034
0.0004567
Where the only one that exceeds the padding is the newly added one.
Use the General format type specifier g:
'{:>8.7g}'.format(number)
reference: https://docs.python.org/3/library/string.html#format-specification-mini-language
Update: For small numbers this format fails to align correctly. In this case you may adopt a mixed approach, but keep in mind that very small numbers will round to zero
for number in floats:
fstr = '{:>8.7g}'.format(number)
if len(fstr) > 8:
fstr = '{:>8.6f}'.format(number)
print(fstr)
for i in floats:
print('{:>8}'.format(f'{i:{8}.{8-len(str(int(i)))-1}f}'.rstrip('0')))
321.1235
21.12346
1.123456
0.123456
0.02345
0.0034

Truncate to the nearest thousandths and ignore the remainder of the value

Can MS Excel do rounding but only up to the nearest thousandths place and ignore the rest of the decimals in a formula? I've tried value, fixed, round and none of these do what I need.
Let's say I have 100 square feet of space and I pay $1.00566399 per sq foot, I need the formula to round only up to the 5 and ignore the rest of the numbers because when you speak on longer terms it makes a difference in rate.
So I should be multiplying 100sf by $1.01 = $101.00 and not get 100sf * 1.00566399 = $101.57
=trunc(A1,5)
If you want to round up, maybe something like
=trunc((A1*10000+1)/10000,5)
Use the TRUNC($cellRef or number, Decimal places) function. It reduces the number of decimal places WITHOUT rounding, then do your math.
So for example:
=TRUNC(1.00566399,3)
=A1*ROUNDUP(B1,2)
Where A1 contains the number of square feet and B1 contains the price per square foot in it's original long decimal form.

representing a number in the octal system

I am not looking for help with my homework. I just need someone to show me the direction to do it.
I know the answer theoretically. I just stuck with idea of how to prove it mathematically.
here is the question.
Representing a number in the octal system require, on the average, about 10 percent more characters than in the decimal system.
How can I prove this mathematically?
Suppose you wanted to represent a given number x in both systems. In the decimal system, this will take in the order of log10(x) digits. In the octal system, it will take in the order of log8(x) digits.
For any a and b, loga(b) can be written as logc(b)/logc(a) for a given c. In particular, let c=10. Therefore, log8(x) = log10(x)/log10(8) ~= 1.1 log10(x), which means log8(x) is about 1.1 times greater than log10(x) for any given x. Note that this result is exact aside from the rounding. What is not exact is approximating the number of digits by log10(x) and log8(x).
The approximative number of decimal digits required for representing a number is : log10(x), and the number of octal digits is : log8(x)
Which means that the average ratio is log8(x)/log10(x)
As log8(x) = ln(x)/ln(8) and log10(x) = ln(x)/ln(10)
The average ratio is ln(10)/ln(8) = 1.1073...
Of course this is not a 100% exact demonstration, a real demonstration would define exactly the number we are trying to find (such as the average number of digits for numbers between 0 and n when n goes to infinity, etc...) and would compute the exact number of digits (which is an integer) and not an approximation.

Conversion of numeric to string in MATLAB

Suppose I want to conver the number 0.011124325465476454 to string in MATLAB.
If I hit
mat2str(0.011124325465476454,100)
I get 0.011124325465476453 which differs in the last digit.
If I hit num2str(0.011124325465476454,'%5.25f')
I get 0.0111243254654764530000000
which is padded with undesirable zeros and differs in the last digit (3 should be 4).
I need a way to convert numerics with random number of decimals to their EXACT string matches (no zeros padded, no final digit modification).
Is there such as way?
EDIT: Since I din't have in mind the info about precision that Amro and nrz provided, I am adding some more additional info about the problem. The numbers I actually need to convert come from a C++ program that outputs them to a txt file and they are all of the C++ double type. [NOTE: The part that inputs the numbers from the txt file to MATLAB is not coded by me and I'm actually not allowed to modify it to keep the numbers as strings without converting them to numerics. I only have access to this code's "output" which is the numerics I'd like to convert]. So far I haven't gotten numbers with more than 17 decimals (NOTE: consequently the example provided above, with 18 decimals, is not very indicative).
Now, if the number has 15 digits eg 0.280783055069002
then num2str(0.280783055069002,'%5.17f') or mat2str(0.280783055069002,17) returns
0.28078305506900197
which is not the exact number (see last digits).
But if I hit mat2str(0.280783055069002,15) I get
0.280783055069002 which is correct!!!
Probably there a million ways to "code around" the problem (eg create a routine that does the conversion), but isn't there some way using the standard built-in MATLAB's to get desirable results when I input a number with random number of decimals (but no more than 17);
My HPF toolbox also allows you to work with an arbitrary precision of numbers in MATLAB.
In MATLAB, try this:
>> format long g
>> x = 0.280783054
x =
0.280783054
As you can see, MATLAB writes it out with the digits you have posed. But how does MATLAB really "feel" about that number? What does it store internally? See what sprintf says:
>> sprintf('%.60f',x)
ans =
0.280783053999999976380053112734458409249782562255859375000000
And this is what HPF sees, when it tries to extract that number from the double:
>> hpf(x,60)
ans =
0.280783053999999976380053112734458409249782562255859375000000
The fact is, almost all decimal numbers are NOT representable exactly in floating point arithmetic as a double. (0.5 or 0.375 are exceptions to that rule, for obvious reasons.)
However, when stored in a decimal form with 18 digits, we see that HPF did not need to store the number as a binary approximation to the decimal form.
x = hpf('0.280783054',[18 0])
x =
0.280783054
>> x.mantissa
ans =
2 8 0 7 8 3 0 5 4 0 0 0 0 0 0 0 0 0
What niels does not appreciate is that decimal numbers are not stored in decimal form as a double. For example what does 0.1 look like internally?
>> sprintf('%.60f',0.1)
ans =
0.100000000000000005551115123125782702118158340454101562500000
As you see, matlab does not store it as 0.1. In fact, matlab stores 0.1 as a binary number, here in effect...
1/16 + 1/32 + 1/256 + 1/512 + 1/4096 + 1/8192 + 1/65536 + ...
or if you prefer
2^-4 + 2^-5 + 2^-8 + 2^-9 + 2^-12 + 2^13 + 2^-16 + ...
To represent 0.1 exactly, this would take infinitely many such terms since 0.1 is a repeating number in binary. MATLAB stops at 52 bits. Just like 2/3 = 0.6666666666... as a decimal, 0.1 is stored only as an approximation as a double.
This is why your problem really is completely about precision and the binary form that a double comprises.
As a final edit after chat...
The point is that MATLAB uses a double to represent a number. So it will take in a number with up to 15 decimal digits and be able to spew them out with the proper format setting.
>> format long g
>> eps
ans =
2.22044604925031e-16
So for example...
>> x = 1.23456789012345
x =
1.23456789012345
And we see that MATLAB has gotten it right. But now add one more digit to the end.
>> x = 1.234567890123456
x =
1.23456789012346
In its full glory, look at x, as MATLAB sees it:
>> sprintf('%.60f',x)
ans =
1.234567890123456024298320699017494916915893554687500000000000
So always beware the last digit of any floating point number. MATLAB will try to round things intelligently, but 15 digits is just on the edge of where you are safe.
Is it necessary to use a tool like HPF or MP to solve such a problem? No, as long as you recognize the limitations of a double. However tools that offer arbitrary precision give you the ability to be more flexible when you need it. For example, HPF offers the use and control of guard digits down in that basement area. If you need them, they are there to save the digits you need from corruption.
You can use Multiple Precision Toolkit from MATLAB File Exchange for arbitrary precision numbers. Floating point numbers do not usually have a precise base-10 presentation.
That's because your number is beyond the precision of the double numeric type (it gives you between 15 to 17 significant decimal digits). In your case, it is rounded to the nearest representable number as soon as the literal is evaluated.
If you need more precision than what the double-precision floating-points provides, store the numbers in strings, or use arbitrary-precision libraries. For example use the Symbolic Toolbox:
sym('0.0111243254654764549999999')
You cannot get EXACT string since the number is stored in double type, or even long double type.
The number stored will be a subtle more or less than the number you gives.
computer only knows binary number 0 & 1. You must know that numbers in one radix may not expressed the same in other radix. For example, number 1/3, radix 10 yields 0.33333333...(The ellipsis (three dots) indicate that there would still be more digits to come, here is digit 3), and it will be truncated to 0.333333; radix 3 yields 0.10000000, see, no more or less, exactly the amount; radix 2 yields 0.01010101... , so it will likely truncated to 0.01010101 in computer,that's 85/256, less than 1/3 by rounding, and next time you fetch the number, it won't be the same you want.
So from the beginning, you should store the number in string instead of float type, otherwise it will lose precision.
Considering the precision problem, MATLAB provides symbolic computation to arbitrary precision.

Resources