Which is a polymorphic type: a type or a set of types? - haskell

Programming in Haskell by Hutton says:
A type that contains one or more type variables is called polymorphic.
Which is a polymorphic type: a type or a set of types?
Is a polymorphic type with a concrete type substituting its type variable a type?
Is a polymorphic type with different concrete types substituting its type variable considered the same or different types?

Is a polymorphic type with a concrete type substituting its type variable a type?
That's the point, yes. However, you need to be careful. Consider:
id :: a -> a
That's polymorphic. You can substitute a := Int and get Int -> Int, and a := Float -> Float and get (Float -> Float) -> Float -> Float. However, you cannot say a := Maybe and get id :: Maybe -> Maybe. That just doesn't make sense. Instead, we have to require that you can only substitute concrete types like Int and Maybe Float for a, not abstract ones like Maybe. This is handled with the kind system. This is not too important for your question, so I'll just summarize. Int and Float and Maybe Float are all concrete types (that is, they have values), so we say that they have type Type (the type of a type is often called its kind). Maybe is a function that takes a concrete type as an argument and returns a new concrete type, so we say Maybe :: Type -> Type. In the type a -> a, we say the type variable a must have type Type, so now the substitutions a := Int, a := String, etc. are allowed, while stuff like a := Maybe isn't.
Is a polymorphic type with different concrete types substituting its type variable considered the same or different types?
No. Back to a -> a: a := Int gives Int -> Int, but a := Float gives Float -> Float. Not the same.
Which is a polymorphic type: a type or a set of types?
Now that's a loaded question. You can skip to the TL;DR at the end, but the question of "what is a polymorphic type" is actually really confusing in Haskell, so here's a wall of text.
There are two ways to see it. Haskell started with one, then moved to the other, and now we have a ton of old literature referring to the old way, so the syntax of the modern system tries to maintain compatibility. It's a bit of a hot mess. Consider
id x = x
What is the type of id? One point of view is that id :: Int -> Int, and also id :: Float -> Float, and also id :: (Int -> Int) -> Int -> Int, ad infinitum, all simultaneously. This infinite family of types can be summed up with one polymorphic type, id :: a -> a. This point of view gives you the Hindley-Milner type system. This is not how modern GHC Haskell works, but this system is what Haskell was based on at its creation.
In Hindley-Milner, there is a hard line between polymorphic types and monomorphic types, and the union of these two groups gives you "types" in general. It's not really fair to say that, in HM, polymorphic types (in HM jargon, "polytypes") are types. You can't take polytypes as arguments, or return them from functions, or place them in a list. Instead, polytypes are only templates for monotypes. If you squint, in HM, a polymorphic type can be seen as a set of those monotypes that fit the schema.
Modern Haskell is built on System F (plus extensions). In System F,
id = \x -> x -- rewriting the example
is not a complete definition. Therefore we can't even think about giving it a type. Every lambda-bound variable needs a type annotation, but x has no annotation. Worse, we can't even decide on one: \(x :: Int) -> x is just as good as \(x :: Float) -> x. In System F, what we do is we write
id = /\(a :: Type) -> \(x :: a) -> x
using /\ to represent Λ (upper-case lambda) much as we use \ to represent λ.
id is a function taking two arguments. The first argument is a Type, named a. The second argument is an a. The result is also an a. The type signature is:
id :: forall (a :: Type). a -> a
forall is a new kind of function arrow, basically. Note that it provides a binder for a. In HM, when we said id :: a -> a, we didn't really define what a was. It was a fresh, global variable. By convention, more than anything else, that variable is not used anywhere else (otherwise the Generalization rule doesn't apply and everything breaks down). If I had written e.g. inject :: a -> Maybe a, afterwards, the textual occurrences of a would be referring to a new global entity, different from the one in id. In System F, the a in forall a. a -> a actually has scope. It's a "local variable" available only for use underneath that forall. The a in inject :: forall a. a -> Maybe a may or may not be the "same" a; it doesn't matter, because we have actual scoping rules that keep everything from falling apart.
Because System F has hygienic scoping rules for type variables, polymorphic types are allowed to do everything other types can do. You can take them as arguments
runCont :: forall (a :: Type). (forall (r :: Type). (a -> r) -> r) -> a
runCons a f = f a (id a) -- omitting type signatures; you can fill them in
You put them in data constructors
newtype Yoneda f a = Yoneda (forall b. (a -> b) -> f b)
You can place them in polymorphic containers:
type Bool = forall a. a -> a -> a
true, false :: Bool
true a t f = t
false a t f = f
thueMorse :: [Bool]
thueMorse = false : true : true : false : _etc
There's an important difference from HM. In HM, if something has polymorphic type, it also has, simultaneously, an infinity of monomorphic types. In System F, a thing can only have one type. id = /\a -> \(x :: a) -> x has type forall a. a -> a, not Int -> Int or Float -> Float. In order to get an Int -> Int out of id, you have to actually give it an argument: id Int :: Int -> Int, and id Float :: Float -> Float.
Haskell is not System F, however. System F is closer to what GHC calls Core, which is an internal language that GHC compiles Haskell to—basically Haskell without any syntax sugar. Haskell is a Hindley-Milner flavored veneer on top of a System F core. In Haskell, nominally a polymorphic type is a type. They do not act like sets of types. However, polymorphic types are still second class. Haskell doesn't let you actually type forall without -XExplicitForalls. It emulates Hindley-Milner's wonky implicit global variable creation by inserting foralls in certain places. The places where it does so are changed by -XScopedTypeVariables. You can't take polymorphic arguments or have polymorphic fields unless you enable -XRankNTypes. You cannot say things like [forall a. a -> a -> a], nor can you say id (forall a. a -> a -> a) :: (forall a. a -> a -> a) -> (forall a. a -> a -> a)—you must define e.g. newtype Bool = Bool { ifThenElse :: forall a. a -> a -> a } to wrap the polymorphism under something monomorphic. You cannot explicitly give type arguments unless you enable -XTypeApplications, and then you can write id #Int :: Int -> Int. You cannot write type lambdas (/\), period; instead, they are inserted implicitly whenever possible. If you define id :: forall a. a -> a, then you cannot even write id in Haskell. It will always be implicitly expanded to an application, id #_.
TL;DR: In Haskell, a polymorphic type is a type. It's not treated as a set of types, or a rule/schema for types, or whatever. However, due to historical reasons, they are treated as second class citizens. By default, it looks like they are treated as mere sets of types, if you squint a bit. Most restrictions on them can be lifted with suitable language extensions, at which point they look more like "just types". The one remaining big restriction (no impredicative instantiations allowed) is rather fundamental and cannot be erased, but that's fine because there's a workaround.

There is some nuance in the word "type" here. Values have concrete types, which cannot be polymorphic. Expressions, on the other hand, have general types, which can be polymorphic. If you're thinking of types for values, then a polymorphic type can be thought of loosely as defining sets of possible concrete types. (At least first-order polymorphic types! Higher-order polymorphism breaks this intuition.) But that's not always a particularly useful way of thinking, and it's not a sufficient definition. It doesn't capture which sets of types can be described in this way (and related notions like parametricity.)
It's a good observation, though, that the same word, "type", is used in these two related, but different, ways.

EDIT: The answer below turns out not to answer the question. The difference is a subtle mistake in terminology: types like Maybe and [] are higher-kinded, whereas types like forall a. a -> a and forall a. Maybe a are polymorphic. The answer below relates to higher-kinded types, but the question was asked about polymorphic types. I’m still leaving this answer up in case it helps anyone else, but I realise now it’s not really an answer to the question.
I would argue that a polymorphic higher-kinded type is closer to a set of types. For instance, you could see Maybe as the set {Maybe Int, Maybe Bool, …}.
However, strictly speaking, this is a bit misleading. To address this in more detail, we need to learn about kinds. Similarly to how types describe values, we say that kinds describe types. The idea is:
A concrete type (that is, one which has values) has a kind of *. Examples include Bool, Char, Int and Maybe String, which all have type *. This is denoted e.g. Bool :: *. Note that functions such as Int -> String also have kind *, as these are concrete types which can contain values such as show!
A type with a type parameter has a kind containing arrows. For instance, in the same way that id :: a -> a, we can say that Maybe :: * -> *, since Maybe takes a concrete type as an argument (such as Int), and produces a concrete type as a result (such as Maybe Int). Something like a -> a also has kind * -> *, since it has one type parameter (a) and produces a concrete result (a -> a). You can get more complex kinds as well: for instance, data Foo f x = FooConstr (f x x) has kind Foo :: (* -> * -> *) -> * -> *. (Can you see why?)
(If the above explanation doesn’t make sense, the Learn You a Haskell book has a great section on kinds as well.)
So now we can answer your questions properly:
Which is a polymorphic higher-kinded type: a type or a set of types?
Neither: a polymorphic higher-kinded type is a type-level function, as indicated by the arrows in its kind. For instance, Maybe :: * -> * is a type-level function which converts e.g. Int → Maybe Int, Bool → Maybe Bool etc.
Is a polymorphic higher-kinded type with a concrete type substituting its type variable a type?
Yes, when your polymorphic higher-kinded type has a kind * -> * (i.e. it has one type parameter, which accepts a concrete type). When you apply a concrete type Conc :: * to a type Poly :: * -> *, it’s just function application, as detailed above, with the result being Poly Conc :: * i.e. a concrete type.
Is a polymorphic higher-kinded type with different concrete types substituting its type variable considered the same or different types?
This question is a bit out of place, as it doesn’t have anything to do with kinds. The answer is definitely no: two types like Maybe Int and Maybe Bool are not the same. Nothing may be a member of both types, but only the former contains a value Just 4, and only the latter contains a value Just False.
On the other hand, it is possible to have two different substitutions where the resulting types are isomorphic. (An isomorphism is where two types are different, but equivalent in some way. For instance, (a, b) and (b, a) are isomorphic, despite being the same type. The formal condition is that two types p,q are isomorphic when you can write two inverse functions p -> q and q -> p.)
One example of this is Const:
data Const a b = Const { getConst :: a }
This type just ignores its second type parameter; as a result, two types like Const Int Char and Const Int Bool are isomorphic. However, they are not the same type: if you make a value of type Const Int Char, but then use it as something of type Const Int Bool, this will result in a type error. This sort of functionality is incredibly useful, as it means you can ‘tag’ a type a using Const a tag, then use the tag as a marker of information on the type level.

Related

Practical applications of Rank 2 polymorphism?

I'm covering polymorphism and I'm trying to see the practical uses of such a feature.
My basic understanding of Rank 2 is:
type MyType = ∀ a. a -> a
subFunction :: a -> a
subFunction el = el
mainFunction :: MyType -> Int
mainFunction func = func 3
I understand that this is allowing the user to use a polymorphic function (subFunction) inside mainFunction and strictly specify it's output (Int). This seems very similar to GADT's:
data Example a where
ExampleInt :: Int -> Example Int
ExampleBool :: Bool -> Example Bool
1) Given the above, is my understanding of Rank 2 polymorphism correct?
2) What are the general situations where Rank 2 polymorphism can be used, as opposed to GADT's, for example?
If you pass a polymorphic function as and argument to a Rank2-polymorphic function, you're essentially passing not just one function but a whole family of functions – for all possible types that fulfill the constraints.
Typically, those forall quantifiers come with a class constraint. For example, I might wish to do number arithmetic with two different types simultaneously (for comparing precision or whatever).
data FloatCompare = FloatCompare {
singlePrecision :: Float
, doublePrecision :: Double
}
Now I might want to modify those numbers through some maths operation. Something like
modifyFloat :: (Num -> Num) -> FloatCompare -> FloatCompare
But Num is not a type, only a type class. I could of course pass a function that would modify any particular number type, but I couldn't use that to modify both a Float and a Double value, at least not without some ugly (and possibly lossy) converting back and forth.
Solution: Rank-2 polymorphism!
modifyFloat :: (∀ n . Num n => n -> n) -> FloatCompare -> FloatCompare
mofidyFloat f (FloatCompare single double)
= FloatCompare (f single) (f double)
The best single example of how this is useful in practice are probably lenses. A lens is a “smart accessor function” to a field in some larger data structure. It allows you to access fields, update them, gather results... while at the same time composing in a very simple way. How it works: Rank2-polymorphism; every lens is polymorphic, with the different instantiations corresponding to the “getter” / “setter” aspects, respectively.
The go-to example of an application of rank-2 types is runST as Benjamin Hodgson mentioned in the comments. This is a rather good example and there are a variety of examples using the same trick. For example, branding to maintain abstract data type invariants across multiple types, avoiding confusion of differentials in ad, a region-based version of ST.
But I'd actually like to talk about how Haskell programmers are implicitly using rank-2 types all the time. Every type class whose methods have universally quantified types desugars to a dictionary with a field with a rank-2 type. In practice, this is virtually always a higher-kinded type class* like Functor or Monad. I'll use a simplified version of Alternative as an example. The class declaration is:
class Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a
The dictionary representing this class would be:
data AlternativeDict f = AlternativeDict {
empty :: forall a. f a,
(<|>) :: forall a. f a -> f a -> f a }
Sometimes such an encoding is nice as it allows one to use different "instances" for the same type, perhaps only locally. For example, Maybe has two obvious instances of Alternative depending on whether Just a <|> Just b is Just a or Just b. Languages without type classes, such as Scala, do indeed use this encoding.
To connect to leftaroundabout's reference to lenses, you can view the hierarchy there as a hierarchy of type classes and the lens combinators as simply tools for explicitly building the relevant type class dictionaries. Of course, the reason it isn't actually a hierarchy of type classes is that we usually will have multiple "instances" for the same type. E.g. _head and _head . _tail are both "instances" of Traversal' s a.
* A higher-kinded type class doesn't necessarily lead to this, and it can happen for a type class of kind *. For example:
-- Higher-kinded but doesn't require universal quantification.
class Sum c where
sum :: c Int -> Int
-- Not higher-kinded but does require universal quantification.
class Length l where
length :: [a] -> l
If you are using modules in Haskell, you are already using Rank-2 types. Theoretically speaking, modules are records with rank-2 type properties.
For example, the Foo module below in Haskell ...
module Foo(id) where
id :: forall a. a -> a
id x = x
import qualified Foo
main = do
putStrLn (Foo.id "hello")
return ()
... can actually be thought as a record as follows:
type FooType = FooType {
id :: forall a. a -> a
}
Foo :: FooType
Foo = Foo {
id = \x -> x
}
P/S (unrelated this question): from a language design perspective, if you are going to support module system, then you might as well support higher-rank types (i.e. allow arbitrary quantification of type variables on any level) to reduce duplication of efforts (i.e. type checking a module should be almost the same as type checking a record with higher rank types).

How do I understand the set of valid inputs to a Haskell type constructor?

Warning: very beginner question.
I'm currently mired in the section on algebraic types in the Haskell book I'm reading, and I've come across the following example:
data Id a =
MkId a deriving (Eq, Show)
idInt :: Id Integer
idInt = MkId 10
idIdentity :: Id (a -> a)
idIdentity = MkId $ \x -> x
OK, hold on. I don't fully understand the idIdentity example. The explanation in the book is that:
This is a little odd. The type Id takes an argument and the data
constructor MkId takes an argument of the corresponding polymorphic
type. So, in order to have a value of type Id Integer, we need to
apply a -> Id a to an Integer value. This binds the a type variable to
Integer and applies away the (->) in the type constructor, giving us
Id Integer. We can also construct a MkId value that is an identity
function by binding the a to a polymorphic function in both the type
and the term level.
But wait. Why only fully polymorphic functions? My previous understanding was that a can be any type. But apparently constrained polymorphic type doesn't work: (Num a) => a -> a won't work here, and the GHC error suggests that only completely polymorphic types or "qualified types" (not sure what those are) are valid:
f :: (Num a) => a -> a
f = undefined
idConsPoly :: Id (Num a) => a -> a
idConsPoly = MkId undefined
Illegal polymorphic or qualified type: Num a => a -> a
Perhaps you intended to use ImpredicativeTypes
In the type signature for ‘idIdentity’:
idIdentity :: Id (Num a => a -> a)
EDIT: I'm a bonehead. I wrote the type signature below incorrectly, as pointed out by #chepner in his answer below. This also resolves my confusion in the next sentence below...
In retrospect, this behavior makes sense because I haven't defined a Num instance for Id. But then what explains me being able to apply a type like Integer in idInt :: Id Integer?
So in generality, I guess my question is: What specifically is the set of valid inputs to type constructors? Only fully polymorphic types? What are "qualified types" then? Etc...
You just have the type constructor in the wrong place. The following is fine:
idConsPoly :: Num a => Id (a -> a)
idConsPoly = MkId undefined
The type constructor Id here has kind * -> *, which means you can give it any value that has kind * (which includes all "ordinary" types) and returns a new value of kind *. In general, you are more concerned with arrow-kinded functions(?), of which type constructors are just one example.
TypeProd is a ternary type constructor whose first two arguments have kind * -> *:
-- Based on :*: from Control.Compose
newtype TypeProd f g a = Prod { unProd :: (f a, g a) }
Either Int is an expression whose value has kind * -> * but is not a type constructor, being the partial application of the type constructor Either to the nullary type constructor Int.
Also contributing to your confusion is that you've misinterpreted the error message from GHC. It means "Num a => a -> a is a polymorphic or qualified type, and therefore illegal (in this context)".
The last sentence that you quoted from the book is not very well worded, and maybe contributed to that misunderstanding. It's important to realize that in Id (a -> a) the argument a -> a is not a polymorphic type, but just an ordinary type that happens to mention a type variable. The thing which is polymorphic is idIdentity, which can have the type Id (a -> a) for any type a.
In standard Haskell polymorphism and qualification can only appear at the outermost level of the type in a type signature.
The type signature is almost correct
idConsPoly :: (Num a) => Id (a -> a)
Should be right, though i have no ghc on my phone to test this.
Also i think your question is quite broad, thus i deliberately answer only the concrete problem here.

Haskell Polymorphism With Kinds and Type Variables

In Haskell I have learnt that there are type variables (ex. id :: a -> a), applied to type signatures, and kinds (ex. Maybe :: * -> *), applied to type constructors and type classes. A type must have kind * (be a concrete type) in order to hold values.
We use type variables to enable polymorphism: Nothing :: Maybe a means that the constant Nothing can belong to a family of possible types. This leads me to believe that kinding and type variables serve the same purpose; wouldn't the last code sample work as simply Nothing :: Maybe, where type class Maybe remains with the kind * -> * to signify that the type belongs to generic family?
What it seems we are doing is taking an empty parameter (* -> *) and filling it in with a type variable (a) that represents the same level of variance.
We see this behavior in another example:
>>> :k Either
Either :: * -> * -> *
>>> :t Left ()
Left () :: Either () b
>>> :t Right ()
Right () :: Either a ()
Why is it theoretically necessary to make the distinction between kinds and type variables?
They are distinct just like typing and usual (value-level) variables are distinct. Variables have types, but they aren't types. So also, type variables have kinds. Type variables are the primary notion: without them you don't have parametric polymorphism, and they exist also in many other languages like Java, C#, etc. But Haskell goes further in allowing types-which-take-parameters ([], Maybe, ->, etc.) to exist on their own and to have type variables which represent such non-concrete types. And this means it needs a kind system to disallow things like Maybe Int Int.
From the example, it seems that you suggest that you can write a signature without type variables and restore it to the signature with them. But then how could you distinguish a -> b -> a and a -> b -> b?

Haskell-(Type declaration) what is "a"?

This is perhaps a very basic question, but, nevertheless, it does not seem to have been covered on SO.
I recently took up Haskell and up until now type declarations consisted of mostly the following:
Int
Bool
Float
etc, etc
Now I am getting into lists and I am seeing type declarations that use a, such as in the following function that iterates through an associative list:
contains :: Int -> [(Int,a)] -> [a]
contains x list = [values | (key,values)<-list, x==key]
Can someone provide an explanation as to what this a is, and how it works? From observation it seems to represent every type. Does this mean I can input any list of any type as parameter?
Yes, you're right, it represents "any type" - the restriction being that all as in a given type signature must resolve to the same type. So you can input a list of any type, but when you use contains to look up a value in the list, the value you look up must be the same type as the elements of the list - which makes sense of course.
In Haskell, uppercase types are concrete types (Int, Bool) or type constructors (Maybe, Either) while lowercase types are type variables. A function is implicitly generic in all the type variables it uses, so this:
contains :: Int -> [(Int, a)] -> [a]
Is shorthand for this*:
contains :: forall a. Int -> [(Int, a)] -> [a]
In C++, forall is spelled template:
template<typename a>
list<a> contains(int, list<pair<int, a>>);
In Java and C#, it’s spelled with angle brackets:
list<a> contains<a>(int, list<pair<int, a>>);
Of course, in these languages, generic type variables are often called T, U, V, while in Haskell they’re often called a, b, c. It’s just a difference of convention.
* This syntax is enabled by the -XExplicitForAll flag in GHC, as well as other extensions.

Polymorphic signature for non-polymorphic function: why not?

As an example, consider the trivial function
f :: (Integral b) => a -> b
f x = 3 :: Int
GHC complains that it cannot deduce (b ~ Int). The definition matches the signature in the sense that it returns something that is Integral (namely an Int). Why would/should GHC force me to use a more specific type signature?
Thanks
Type variables in Haskell are universally quantified, so Integral b => b doesn't just mean some Integral type, it means any Integral type. In other words, the caller gets to pick which concrete types should be used. Therefore, it is obviously a type error for the function to always return an Int when the type signature says I should be able to choose any Integral type, e.g. Integer or Word64.
There are extensions which allow you to use existentially quantified type variables, but they are more cumbersome to work with, since they require a wrapper type (in order to store the type class dictionary). Most of the time, it is best to avoid them. But if you did want to use existential types, it would look something like this:
{-# LANGUAGE ExistentialQuantification #-}
data SomeIntegral = forall a. Integral a => SomeIntegral a
f :: a -> SomeIntegral
f x = SomeIntegral (3 :: Int)
Code using this function would then have to be polymorphic enough to work with any Integral type. We also have to pattern match using case instead of let to keep GHC's brain from exploding.
> case f True of SomeIntegral x -> toInteger x
3
> :t toInteger
toInteger :: Integral a => a -> Integer
In the above example, you can think of x as having the type exists b. Integral b => b, i.e. some unknown Integral type.
The most general type of your function is
f :: a -> Int
With a type annotation, you can only demand that you want a more specific type, for example
f :: Bool -> Int
but you cannot declare a less specific type.
The Haskell type system does not allow you to make promises that are not warranted by your code.
As others have said, in Haskell if a function returns a result of type x, that means that the caller gets to decide what the actual type is. Not the function itself. In other words, the function must be able to return any possible type matching the signature.
This is different to most OOP languages, where a signature like this would mean that the function gets to choose what it returns. Apparently this confuses a few people...

Resources