Problem in GridSearching a LSTM network - Batch_size issue - python-3.x

I wrote code to apply the gridsearch method to a LSTM network built with keras. Everything seems to work fine, but i get some problem with passing the batch_size.
I tried to change the format of batch_size but, as i understand, it must be a tuple.
#LSTM ok
from Methods.LSTM_1HL import LSTM_method
Yhat_train_LSTM, Yhat_test_LSTM = LSTM_method(X_train, X_test, Y_train,
Y_test)
def create_model(optimizer, hl1_nodes, input_shape):
# creation of the NN - Electric Load
# LSTM layers followed by other LSTM layer must have the parameter "return_sequences" set at True
model = Sequential()
model.add(LSTM(units = hl1_nodes , input_shape=input_shape, return_sequences=False))
model.add(Dense(1, activation="linear")) # output layer
model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=['accuracy'])
model.summary()
return model
def LSTM_method(X_train, X_test, Y_train, Y_test):
# normalize X and Y data
mmsx = MinMaxScaler()
mmsy = MinMaxScaler()
X_train = mmsx.fit_transform(X_train)
X_test = mmsx.transform(X_test)
Y_train = mmsy.fit_transform(Y_train)
Y_test = mmsy.transform(Y_test)
X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape[1])
# NN for Electric Load
# LSTM Input Shape
time_steps = 1 # number of time-steps you are feeding a sequence (?)
inputs_numb = X_train.shape[1] # number of inputs
input_shape=(time_steps, inputs_numb)
model = KerasRegressor(build_fn=create_model,verbose=1)
#GridSearch code
start=time()
optimizers = ['rmsprop', 'adam']
epochs = np.array([100, 500, 1000])
hl1_nodes = np.array([1, 10, 50])
btcsz = np.array([1,X_train.shape[0]])
param_grid = dict(optimizer=optimizers, hl1_nodes=hl1_nodes, input_shape=input_shape, nb_epoch=epochs,batch_size=btcsz)
scoring = make_scorer(accuracy_score) #in order to use a metric as a scorer
grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring = scoring)
grid_result = grid.fit(X_train, Y_train)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
for params, mean_score, scores in grid_result.grid_scores_:
print("%f (%f) with: %r" % (scores.mean(), scores.std(), params))
print("total time:",time()-start)
# Predictions - Electric Load
Yhat_train = grid_result.predict(X_train, verbose=0)
X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape[1])
Yhat_test = grid_result.predict(X_test, verbose=0)
# Denormalization - Electric Load
Yhat_train = mmsy.inverse_transform(Yhat_train)
Yhat_test = mmsy.inverse_transform(Yhat_test)
Y_train = mmsy.inverse_transform(Y_train)
Y_test = mmsy.inverse_transform(Y_test)
return Yhat_train, Yhat_test
Below the error I get:
TypeError Traceback (most recent call last)
in
10 #from Methods.LSTM_1HL import create_model
11
---> 12 Yhat_train_LSTM, Yhat_test_LSTM = LSTM_method(X_train, X_test, Y_train, Y_test)
c:\Users\ER180124\Code\LoadForecasting\Methods\LSTM_1HL.py in LSTM_method(X_train, X_test, Y_train, Y_test)
62 scoring = make_scorer(accuracy_score) #in order to use a metric as a scorer
63 grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring = scoring)
---> 64 grid_result = grid.fit(X_train, Y_train)
65
66 print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
~\.conda\envs\PierEnv\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params)
720 return results_container[0]
721
--> 722 self._run_search(evaluate_candidates)
723
724 results = results_container[0]
~\.conda\envs\PierEnv\lib\site-packages\sklearn\model_selection\_search.py in _run_search(self, evaluate_candidates)
1189 def _run_search(self, evaluate_candidates):
1190 """Search all candidates in param_grid"""
-> 1191 evaluate_candidates(ParameterGrid(self.param_grid))
1192
1193
~\.conda\envs\PierEnv\lib\site-packages\sklearn\model_selection\_search.py in evaluate_candidates(candidate_params)
709 for parameters, (train, test)
710 in product(candidate_params,
--> 711 cv.split(X, y, groups)))
712
713 all_candidate_params.extend(candidate_params)
~\.conda\envs\PierEnv\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)
915 # remaining jobs.
916 self._iterating = False
--> 917 if self.dispatch_one_batch(iterator):
918 self._iterating = self._original_iterator is not None
919
~\.conda\envs\PierEnv\lib\site-packages\sklearn\externals\joblib\parallel.py in dispatch_one_batch(self, iterator)
757 return False
758 else:
--> 759 self._dispatch(tasks)
760 return True
761
~\.conda\envs\PierEnv\lib\site-packages\sklearn\externals\joblib\parallel.py in _dispatch(self, batch)
714 with self._lock:
715 job_idx = len(self._jobs)
--> 716 job = self._backend.apply_async(batch, callback=cb)
717 # A job can complete so quickly than its callback is
718 # called before we get here, causing self._jobs to
~\.conda\envs\PierEnv\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in apply_async(self, func, callback)
180 def apply_async(self, func, callback=None):
181 """Schedule a func to be run"""
--> 182 result = ImmediateResult(func)
183 if callback:
184 callback(result)
~\.conda\envs\PierEnv\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in __init__(self, batch)
547 # Don't delay the application, to avoid keeping the input
548 # arguments in memory
--> 549 self.results = batch()
550
551 def get(self):
~\.conda\envs\PierEnv\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self)
223 with parallel_backend(self._backend, n_jobs=self._n_jobs):
224 return [func(*args, **kwargs)
--> 225 for func, args, kwargs in self.items]
226
227 def __len__(self):
~\.conda\envs\PierEnv\lib\site-packages\sklearn\externals\joblib\parallel.py in (.0)
223 with parallel_backend(self._backend, n_jobs=self._n_jobs):
224 return [func(*args, **kwargs)
--> 225 for func, args, kwargs in self.items]
226
227 def __len__(self):
~\.conda\envs\PierEnv\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, error_score)
526 estimator.fit(X_train, **fit_params)
527 else:
--> 528 estimator.fit(X_train, y_train, **fit_params)
529
530 except Exception as e:
~\.conda\envs\PierEnv\lib\site-packages\keras\wrappers\scikit_learn.py in fit(self, x, y, **kwargs)
139 **self.filter_sk_params(self.build_fn.__call__))
140 else:
--> 141 self.model = self.build_fn(**self.filter_sk_params(self.build_fn))
142
143 loss_name = self.model.loss
c:\Users\ER180124\Code\LoadForecasting\Methods\LSTM_1HL.py in create_model(optimizer, hl1_nodes, input_shape)
19 # LSTM layers followed by other LSTM layer must have the parameter "return_sequences" set at True
20 model = Sequential()
---> 21 model.add(LSTM(units = hl1_nodes , input_shape=input_shape, return_sequences=False))
22 model.add(Dense(1, activation="linear")) # output layer
23 model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=['accuracy'])
~\.conda\envs\PierEnv\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
~\.conda\envs\PierEnv\lib\site-packages\keras\layers\recurrent.py in __init__(self, units, activation, recurrent_activation, use_bias, kernel_initializer, recurrent_initializer, bias_initializer, unit_forget_bias, kernel_regularizer, recurrent_regularizer, bias_regularizer, activity_regularizer, kernel_constraint, recurrent_constraint, bias_constraint, dropout, recurrent_dropout, implementation, return_sequences, return_state, go_backwards, stateful, unroll, **kwargs)
2183 stateful=stateful,
2184 unroll=unroll,
-> 2185 **kwargs)
2186 self.activity_regularizer = regularizers.get(activity_regularizer)
2187
~\.conda\envs\PierEnv\lib\site-packages\keras\layers\recurrent.py in __init__(self, cell, return_sequences, return_state, go_backwards, stateful, unroll, **kwargs)
406 '(tuple of integers, '
407 'one integer per RNN state).')
--> 408 super(RNN, self).__init__(**kwargs)
409 self.cell = cell
410 self.return_sequences = return_sequences
~\.conda\envs\PierEnv\lib\site-packages\keras\engine\base_layer.py in __init__(self, **kwargs)
145 batch_size = None
146 batch_input_shape = (
--> 147 batch_size,) + tuple(kwargs['input_shape'])
148 self.batch_input_shape = batch_input_shape
149
TypeError: 'int' object is not iterable
I do not understand why in the last part of the error message i get: "batch_size = None" while i define a batch size that is a tuple.

Well, I think I got your problem.
When you are doing CV Search, a param grid is generated from your param dictionary using most probably a cross product of possible configurations. Your param dictionary has input_shape of (time_steps, inputs_numb) which is a sequence of two integers actually. So, your input shape parameter is either time_steps or inputs_numb. Which then becomes (None,) + (times_steps) or (None,) + (inputs_numb) in the final line of the stack trace. This is a tuple + int operation so it is not valid. Instead, you want your configuration space to have only one possible input_shape.
What you should do is to convert this line
input_shape=(time_steps, inputs_numb)
to this:
input_shape=[(time_steps, inputs_numb)]

Related

XGBoost: While using the `eval_set` in .fit causing Error

I'm trying to train the model using Xgboost. The code is doing split using KFold. And for each fold, it's running the Xgboost model using fit. Within the fit function, I'm trying to evaluate both train and valid data to check if the errors. And then doing the prediction in test set.
I'm running the following code using Xgboost.
kf = GroupKFold(n_splits=4)
for trn_idx, test_idx in kf.split(X, groups=X.year) :
x_train, x_valid = X.iloc[trn_idx], X.iloc[test_idx]
y_train, y_valid = y.iloc[trn_idx], y.iloc[test_idx]
xgb_model = xgb.XGBRegressor(
booster = 'dart',
eta = 0.1,
gamma = 0,
colsample_bytree = 0.7,
n_estimators = 1200,
max_depth = 1,
reg_alpha = 1.1,
reg_lambda = 1.1,
subsample = 0.03,
eval_metric=my_smape)
xgb_model.fit(x_train, y_train,
eval_set=[(x_train, y_train), (x_valid,y_valid)], early_stopping_rounds=20,
verbose=True)
But I'm getting the following error. I checked this doc, and my code is according to the doc. Can someone please help me find the solution?
AttributeError Traceback (most recent call last)
<ipython-input-38-81b11a21472c> in <module>
23 eval_metric=my_smape)
24
---> 25 xgb_model.fit(x_train, y_train,
26 eval_set=[(x_valid,y_valid)], early_stopping_rounds=20,
27 verbose=True)
D:\Anaconda\lib\site-packages\xgboost\core.py in inner_f(*args, **kwargs)
573 for k, arg in zip(sig.parameters, args):
574 kwargs[k] = arg
--> 575 return f(**kwargs)
576
577 return inner_f
D:\Anaconda\lib\site-packages\xgboost\sklearn.py in fit(self, X, y, sample_weight, base_margin, eval_set, eval_metric, early_stopping_rounds, verbose, xgb_model, sample_weight_eval_set, base_margin_eval_set, feature_weights, callbacks)
959 xgb_model, eval_metric, params, early_stopping_rounds, callbacks
960 )
--> 961 self._Booster = train(
962 params,
963 train_dmatrix,
D:\Anaconda\lib\site-packages\xgboost\core.py in inner_f(*args, **kwargs)
573 for k, arg in zip(sig.parameters, args):
574 kwargs[k] = arg
--> 575 return f(**kwargs)
576
577 return inner_f
D:\Anaconda\lib\site-packages\xgboost\training.py in train(params, dtrain, num_boost_round, evals, obj, feval, maximize, early_stopping_rounds, evals_result, verbose_eval, xgb_model, callbacks, custom_metric)
180 break
181 bst.update(dtrain, i, obj)
--> 182 if cb_container.after_iteration(bst, i, dtrain, evals):
183 break
184
D:\Anaconda\lib\site-packages\xgboost\callback.py in after_iteration(self, model, epoch, dtrain, evals)
237 for _, name in evals:
238 assert name.find('-') == -1, 'Dataset name should not contain `-`'
--> 239 score: str = model.eval_set(evals, epoch, self.metric, self._output_margin)
240 splited = score.split()[1:] # into datasets
241 # split up `test-error:0.1234`
D:\Anaconda\lib\site-packages\xgboost\core.py in eval_set(self, evals, iteration, feval, output_margin)
1860 if feval is not None:
1861 for dmat, evname in evals:
-> 1862 feval_ret = feval(
1863 self.predict(dmat, training=False, output_margin=output_margin), dmat
1864 )
D:\Anaconda\lib\site-packages\xgboost\sklearn.py in inner(y_score, dmatrix)
99 def inner(y_score: np.ndarray, dmatrix: DMatrix) -> Tuple[str, float]:
100 y_true = dmatrix.get_label()
--> 101 return func.__name__, func(y_true, y_score)
102 return inner
103
AttributeError: '_PredictScorer' object has no attribute '__name__'
It looks like you've run make_scorer() on your custom metric. Try supplying the original function as eval_metric instead, this should fix the issue.

layers compatibility between attention layer and CONV1D in keras

I am building a model in bilstm-attention-conv1d fashion (i want to use multiple conv1d with different kernel sizes) I am facing the layers incompatibility issue between the attention layer and conv1d layer. I have tried Reshape function but it's not working, Following is my code:
my model is as follows
sequence_input = Input(shape=(maxlen,), dtype="int32")
embedded_sequences = Embedding(50000, output_dim=output_dim)(sequence_input)
lstm = Bidirectional(LSTM(RNN_CELL_SIZE, return_sequences = True), name="bi_lstm_0")(embedded_sequences)
# Getting our LSTM outputs
(lstm, forward_h, forward_c, backward_h, backward_c) = Bidirectional(LSTM(RNN_CELL_SIZE, return_sequences=True, return_state=True),
name="bi_lstm_1")(lstm)
state_h = Concatenate()([forward_h, backward_h])
state_c = Concatenate()([forward_c, backward_c])
context_vector, attention_weights = Attention(10)(lstm, state_h)
x = Reshape((maxlen, output_dim, 1))(context_vector)
kernel_sizes = [1,2,3,4,5]
convs = []
for kernel_size in range(len(kernel_sizes)):
conv = Conv1D(128, kernel_size, activation='relu')(x)
convs.append(conv)
avg_pool = GlobalAveragePooling1D()(convs)
max_pool = GlobalMaxPooling1D()(convs)
conc = concatenate([avg_pool, max_pool])
output = Dense(50, activation="sigmoid")(conc)
model = keras.Model(inputs=sequence_input, outputs=output)
print(model.summary())
my code gives me the following error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-114-8e5c0c75e84a> in <module>()
13 context_vector, attention_weights = Attention(10)(lstm, state_h)
14
---> 15 x = Reshape((maxlen, output_dim, 1))(context_vector)
16
17
6 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py in __call__(self, *args, **kwargs)
950 if _in_functional_construction_mode(self, inputs, args, kwargs, input_list):
951 return self._functional_construction_call(inputs, args, kwargs,
--> 952 input_list)
953
954 # Maintains info about the `Layer.call` stack.
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py in _functional_construction_call(self, inputs, args, kwargs, input_list)
1089 # Check input assumptions set after layer building, e.g. input shape.
1090 outputs = self._keras_tensor_symbolic_call(
-> 1091 inputs, input_masks, args, kwargs)
1092
1093 if outputs is None:
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py in _keras_tensor_symbolic_call(self, inputs, input_masks, args, kwargs)
820 return nest.map_structure(keras_tensor.KerasTensor, output_signature)
821 else:
--> 822 return self._infer_output_signature(inputs, args, kwargs, input_masks)
823
824 def _infer_output_signature(self, inputs, args, kwargs, input_masks):
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py in _infer_output_signature(self, inputs, args, kwargs, input_masks)
861 # TODO(kaftan): do we maybe_build here, or have we already done it?
862 self._maybe_build(inputs)
--> 863 outputs = call_fn(inputs, *args, **kwargs)
864
865 self._handle_activity_regularization(inputs, outputs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/layers/core.py in call(self, inputs)
555 # Set the static shape for the result since it might lost during array_ops
556 # reshape, eg, some `None` dim in the result could be inferred.
--> 557 result.set_shape(self.compute_output_shape(inputs.shape))
558 return result
559
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/layers/core.py in compute_output_shape(self, input_shape)
546 output_shape = [input_shape[0]]
547 output_shape += self._fix_unknown_dimension(input_shape[1:],
--> 548 self.target_shape)
549 return tensor_shape.TensorShape(output_shape)
550
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/layers/core.py in _fix_unknown_dimension(self, input_shape, output_shape)
534 output_shape[unknown] = original // known
535 elif original != known:
--> 536 raise ValueError(msg)
537 return output_shape
538
ValueError: total size of new array must be unchanged, input_shape = [256], output_shape = [2500, 100, 1]
kindly help me

how to call a pre-trained decoder model in custom loss function in keras?

I trained a auto-encoder model before and saved decoder model. Next, I train a new model that labeled as 'netA', I want to use decoder model in custom loss function. and tried, but I got error, there was my code and error information:
def custom_loss(y_true,y_pred):
a = decoder(y_pred)
b = decoder(y_true)
c = K.mean(K.square(a-b))
return c
input_feature = 409
output_feature = 256
model = Sequential()
model.add(Dense(256, activation = 'relu',input_shape=(input_feature,)))
model.add(Dense(128, activation = 'relu'))
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(128,activation='relu'))
model.add(Dense(output_feature,activation='sigmoid'))
model.summary()
model.compile(optimizer = Adam(lr = 1e-4),loss=custom_loss, metrics = ['mse'])
history = model.fit(x_train_pca_scale, y_train_scale_coding, epochs = 200, batch_size = 32, verbose= 2,validation_data = (x_test_pca_scale, y_test_scale_coding))
the error is :
AssertionError Traceback (most recent call last)
in
23
24 model.summary()
---> 25 model.compile(optimizer = Adam(lr = 1e-4),loss=custom_loss, metrics = ['mse'])
26 #checkpointer = ModelCheckpoint(filepath='/home/lidan/3DFacePrediction/gene.face.autoencoder/gene.face.min.val_loss.hd5', monitor='val_loss',verbose=1,mode='min',save_best_only=True)
27
~/software/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py
in symbolic_fn_wrapper(*args, **kwargs)
73 if _SYMBOLIC_SCOPE.value:
74 with get_graph().as_default():
---> 75 return func(*args, **kwargs)
76 else:
77 return func(*args, **kwargs)
~/software/anaconda3/lib/python3.7/site-packages/keras/engine/training.py
in compile(self, optimizer, loss, metrics, loss_weights,
sample_weight_mode, weighted_metrics, target_tensors, **kwargs)
227 # loss_weight_2 * output_2_loss_fn(...) +
228 # layer losses.
--> 229 self.total_loss = self._prepare_total_loss(masks)
230
231 # Functions for train, test and predict will
~/software/anaconda3/lib/python3.7/site-packages/keras/engine/training.py
in _prepare_total_loss(self, masks)
690
691 output_loss = loss_fn(
--> 692 y_true, y_pred, sample_weight=sample_weight)
693
694 if len(self.outputs) > 1:
~/software/anaconda3/lib/python3.7/site-packages/keras/losses.py in
call(self, y_true, y_pred, sample_weight)
69 scope_name = 'lambda' if self.name == '' else self.name
70 with K.name_scope(scope_name):
---> 71 losses = self.call(y_true, y_pred)
72 return losses_utils.compute_weighted_loss(
73 losses, sample_weight, reduction=self.reduction)
~/software/anaconda3/lib/python3.7/site-packages/keras/losses.py in
call(self, y_true, y_pred)
130 Loss values per sample.
131 """
--> 132 return self.fn(y_true, y_pred, **self._fn_kwargs)
133
134 def get_config(self):
in custom_loss(y_true, y_pred)
3 def custom_loss(y_true,y_pred):
4 a = decoder(y_pred)
----> 5 b = decoder(y_true)
6 c = K.mean(K.square(a-b))
7 return c
~/software/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py
in symbolic_fn_wrapper(*args, **kwargs)
73 if _SYMBOLIC_SCOPE.value:
74 with get_graph().as_default():
---> 75 return func(*args, **kwargs)
76 else:
77 return func(*args, **kwargs)
~/software/anaconda3/lib/python3.7/site-packages/keras/engine/base_layer.py
in call(self, inputs, **kwargs)
487 # Actually call the layer,
488 # collecting output(s), mask(s), and shape(s).
--> 489 output = self.call(inputs, **kwargs)
490 output_mask = self.compute_mask(inputs, previous_mask)
491
~/software/anaconda3/lib/python3.7/site-packages/keras/engine/network.py
in call(self, inputs, mask)
581 return self._output_tensor_cache[cache_key]
582 else:
--> 583 output_tensors, _, _ = self.run_internal_graph(inputs, masks)
584 return output_tensors
585
~/software/anaconda3/lib/python3.7/site-packages/keras/engine/network.py
in run_internal_graph(self, inputs, masks)
796 input_shapes = unpack_singleton(
797 [x._keras_shape for x in computed_tensors])
--> 798 shapes = to_list(layer.compute_output_shape(input_shapes))
799 uses_learning_phase = any(
800 [x._uses_learning_phase for x in computed_tensors])
~/software/anaconda3/lib/python3.7/site-packages/keras/layers/core.py
in compute_output_shape(self, input_shape)
915 def compute_output_shape(self, input_shape):
916 assert input_shape and len(input_shape) >= 2
--> 917 assert input_shape[-1]
918 output_shape = list(input_shape)
919 output_shape[-1] = self.units
AssertionError:
I felt confused about the error information,because the decoder model worked well in y_pred and failed in y_true.
Could someone help me solve it or just give me another way to put a saved decoder model in loss function? Thank you very much!

Why am I getting a Pytorch Runtime Error on Test Set

I have a model that is a binary image classification model with the resnext model. I keep getting a run time error when it gets to the test set. Error message is
RuntimeError: Expected object of backend CPU but got backend CUDA for argument #2 'weight'
I am sending my test set tensors to my GPU like my train model. I've looked at the following and I'm doing what was suggested here as stated above.
Here is my model code:
resnext = models.resnext50_32x4d(pretrained=True)
resnext = resnext.to(device)
for param in resnext.parameters():
param.requires_grad = True
resnext.classifier = nn.Sequential(nn.Linear(2048, 1000),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(1000, 2),
nn.Softmax(dim = 1))
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(resnext.classifier.parameters(), lr=0.001)
import time
start_time = time.time()
epochs = 1
max_trn_batch = 5
max_tst_batch = 156
y_val_list = []
policy_list = []
train_losses = []
test_losses = []
train_correct = []
test_correct = []
for i in range(epochs):
for i in tqdm(range(0, max_trn_batch)):
trn_corr = 0
tst_corr = 0
# Run the training batches
for b, (X_train, y_train, policy) in enumerate(train_loader):
#print(y_train, policy)
X_train = X_train.to(device)
y_train = y_train.to(device)
if b == max_trn_batch:
break
b+=1
# Apply the model
y_pred = resnext(X_train)
loss = criterion(y_pred, y_train)
# Tally the number of correct predictions
predicted = torch.max(y_pred.data, 1)[1]
batch_corr = (predicted == y_train).sum()
trn_corr += batch_corr
# Update parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print interim results
if b%1 == 0:
print(f'epoch: {i:2} batch: {b:4} [{100*b:6}/63610] loss: {loss.item():10.8f} \
accuracy: {trn_corr.item()/(100*b):7.3f}%')
train_losses.append(loss)
train_correct.append(trn_corr)
# Run the testing batches
with torch.no_grad():
for b, (X_test, y_test, policy) in enumerate(test_loader):
policy_list.append(policy)
X_test.to(device)
y_test.to(device)
if b == max_tst_batch:
break
# Apply the model
y_val = resnext(X_test)
y_val_list.append(y_val.data)
# Tally the number of correct predictions
predicted = torch.max(y_val.data, 1)[1]
tst_corr += (predicted == y_test).sum()
loss = criterion(y_val, y_test)
test_losses.append(loss)
test_correct.append(tst_corr)
print(f'\nDuration: {time.time() - start_time:.0f} seconds') # print the time elapsed
Here is the full traceback:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-84-48bce2e8d4fa> in <module>
60
61 # Apply the model
---> 62 y_val = resnext(X_test)
63 y_val_list.append(y_val.data)
64 # Tally the number of correct predictions
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in __call__(self, *input, **kwargs)
545 result = self._slow_forward(*input, **kwargs)
546 else:
--> 547 result = self.forward(*input, **kwargs)
548 for hook in self._forward_hooks.values():
549 hook_result = hook(self, input, result)
C:\ProgramData\Anaconda3\lib\site-packages\torchvision\models\resnet.py in forward(self, x)
194
195 def forward(self, x):
--> 196 x = self.conv1(x)
197 x = self.bn1(x)
198 x = self.relu(x)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in __call__(self, *input, **kwargs)
545 result = self._slow_forward(*input, **kwargs)
546 else:
--> 547 result = self.forward(*input, **kwargs)
548 for hook in self._forward_hooks.values():
549 hook_result = hook(self, input, result)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\conv.py in forward(self, input)
341
342 def forward(self, input):
--> 343 return self.conv2d_forward(input, self.weight)
344
345 class Conv3d(_ConvNd):
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\conv.py in conv2d_forward(self, input, weight)
338 _pair(0), self.dilation, self.groups)
339 return F.conv2d(input, weight, self.bias, self.stride,
--> 340 self.padding, self.dilation, self.groups)
341
342 def forward(self, input):
RuntimeError: Expected object of backend CPU but got backend CUDA for argument #2 'weight'
Again, my tensors and the model are sent to the GPU so I'm not sure what is going on. Does anyone see my mistake?
[...] my tensors and the model are sent to the GPU [...]
Not the test Tensors. It is a simple mistake:
X_test.to(device)
y_test.to(device)
should be
X_test = X_test.to(device)
y_test = y_test.to(device)

scoring "roc_auc" value is not working with gridsearchCV appling RandomForestclassifer

I keep getting this error when perform this with gridsearchCV with scoring value is 'roc_auc'('f1', 'precision','recall' work fine)
# Construct a pipeline
pipe = Pipeline([
('reduce_dim',PCA()),
('rf',RandomForestClassifier(min_samples_leaf=5,random_state=123))
])
N_FEATURES_OPTIONS = [2] # for PCA [2, 4, 8]
# these below param is for RandomForestClassifier
N_ESTIMATORS = [10,50] # 10,50,100
MAX_DEPTH = [5,6] # 5,6,7,8,9
MIN_SAMPLE_LEAF = 5
param_grid = [
{
'reduce_dim': [PCA()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'rf__n_estimators' : N_ESTIMATORS,
'rf__max_depth': MAX_DEPTH
},
{
'reduce_dim': [SelectKBest(f_classif)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'rf__n_estimators' : N_ESTIMATORS,
'rf__max_depth': MAX_DEPTH
},
]
grid = GridSearchCV(pipe, param_grid= param_grid, cv =10,n_jobs=1,scoring = 'roc_auc')
grid.fit(X_train_s,y_train_s)
And I get this error
AttributeError Traceback (most recent call last)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/metrics/scorer.py in __call__(self, clf, X, y, sample_weight)
186 try:
--> 187 y_pred = clf.decision_function(X)
188
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/utils/metaestimators.py in __get__(self, obj, type)
108 else:
--> 109 getattr(delegate, self.attribute_name)
110 break
AttributeError: 'RandomForestClassifier' object has no attribute 'decision_function'
During handling of the above exception, another exception occurred:
IndexError Traceback (most recent call last)
<ipython-input-16-86491f3b6aa7> in <module>()
----> 1 grid.fit(X_train_s,y_train_s)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/model_selection/_search.py in fit(self, X, y, groups, **fit_params)
637 error_score=self.error_score)
638 for parameters, (train, test) in product(candidate_params,
--> 639 cv.split(X, y, groups)))
640
641 # if one choose to see train score, "out" will contain train score info
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)
777 # was dispatched. In particular this covers the edge
778 # case of Parallel used with an exhausted iterator.
--> 779 while self.dispatch_one_batch(iterator):
780 self._iterating = True
781 else:
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)
623 return False
624 else:
--> 625 self._dispatch(tasks)
626 return True
627
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)
586 dispatch_timestamp = time.time()
587 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 588 job = self._backend.apply_async(batch, callback=cb)
589 self._jobs.append(job)
590
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)
109 def apply_async(self, func, callback=None):
110 """Schedule a func to be run"""
--> 111 result = ImmediateResult(func)
112 if callback:
113 callback(result)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)
330 # Don't delay the application, to avoid keeping the input
331 # arguments in memory
--> 332 self.results = batch()
333
334 def get(self):
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, error_score)
486 fit_time = time.time() - start_time
487 # _score will return dict if is_multimetric is True
--> 488 test_scores = _score(estimator, X_test, y_test, scorer, is_multimetric)
489 score_time = time.time() - start_time - fit_time
490 if return_train_score:
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _score(estimator, X_test, y_test, scorer, is_multimetric)
521 """
522 if is_multimetric:
--> 523 return _multimetric_score(estimator, X_test, y_test, scorer)
524 else:
525 if y_test is None:
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _multimetric_score(estimator, X_test, y_test, scorers)
551 score = scorer(estimator, X_test)
552 else:
--> 553 score = scorer(estimator, X_test, y_test)
554
555 if hasattr(score, 'item'):
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/metrics/scorer.py in __call__(self, clf, X, y, sample_weight)
195
196 if y_type == "binary":
--> 197 y_pred = y_pred[:, 1]
198 elif isinstance(y_pred, list):
199 y_pred = np.vstack([p[:, -1] for p in y_pred]).T
IndexError: index 1 is out of bounds for axis 1 with size 1
I have looked up for this error and found some kind of similar problem here with Kerasclassifier. But I have no idea how to fix it
Keras Wrappers for Scikit Learn - AUC scorer is not working
can anyone explain to me what is wrong???
The error could be because som causes:
If you have only one target class: it fails
If you have >=3 target classes: if fails.
Maybe you have 2 classes, and in one fold of the CV, the test labels are only from one class.
When sklearn compute the AUC metric, it must have 2 classes, because the method for getting the AUC requires only two classes (to compute tpr and fpr with all thresholds).
Example of errors:
grid.fit(np.random.rand(100,2), np.random.randint(1, size=100)) #one class labels
grid.fit(np.random.rand(100,2), np.random.randint(3, size=100)) #3 class labels
#BOTH Throws same error when computing AUC
Example that should not thow an error but it could happen depends of the folds of the CV:
grid.fit(np.random.rand(100,2), np.random.randint(2, size=100)) #two class labels
#This shouldnt throw an error
SOLUTION
If you have more than 2 classes: you have to compute manually (or maybe there are some libraries, but I dont know about it), the 1 vs all, in which you compute auc with 2 classes (one class vs all the others), or All vs All AUC (pairwise AUC, where you compute one class vs ALL being the single class one class at a time, and then calculate the mean).
If you have 2 classes:
grid = GridSearchCV(pipe, param_grid= param_grid, cv = StratifiedKFold(), n_jobs=1, scoring = 'roc_auc')

Resources