3D Plotter Only Works for certain shapes - python-3.x

The issue is that this script is not able to plot a sphere for example while it is able to plot several cones such as the one in the script.
I have changes the shape and tried finding the lines from which the error comes from using the error message given when plotting a sphere.
import sympy as sy
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
# Plot Figure
nd = 50 # Number of points in graph
ax = plt.axes(projection='3d') # Adds 3d axis to figure
x1 = np.linspace(-15, 15, nd)
y1 = np.linspace(-15, 15, nd)
X, Y = np.meshgrid(x1, y1) # Create 2D grid with x1 and y1
i = 0
a = 0
b = 0
Z = np.array([])
x = sy.Symbol('x')
y = sy.Symbol('y')
z = (x**2+y**2)**0.5 # Function goes here
for i in range(nd): # Iterate over rows
b = 0
xv1 = X[a, :]
yv1 = Y[a, :]
for i in range(nd): # Iterate over elements in one row
xv = xv1[b]
yv = yv1[b]
z1 = z.subs([(x, xv), (y, yv)])
Z = np.append(Z, z1) # Append values to array just a row
b = b + 1
a = a + 1
Z = np.reshape(Z, (nd, nd))
print(Z.dtype)
print(Y.dtype)
print(X.dtype)
Z = Z.astype(float)
Y = Y.astype(float)
X = X.astype(float)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='viridis', edgecolor='none')
plt.show()
The result with a sphere function is that the script crashes. I would hope this script should be able to graph this kind of 3D shapes.

Is this the error you are getting by any chance?
TypeError: can't convert complex to float
The way this is formulated you are asking for an imaginary number back. If you define this as your sphere equation:
z = (x**2+y**2-1)**0.5
you will end up asking for sqrt(-1) when x=y=0, which will not work. Try parameterizing with spherical coordinates like in this example: Python/matplotlib : plotting a 3d cube, a sphere and a vector?

Related

matplotlib draw a contour line on a colorbar plot

I used below code to generate the colorbar plot of an image:
plt.imshow(distance)
cb = plt.colorbar()
plt.savefig(generate_filename("test_images.png"))
cb.remove()
The image looks likes this:
I want to draw a single contour line on this image where the signed distance value is equal to 0. I checked the doc of pyplot.contour but it needs a X and Y vector that represents the coordinates and a Z that represents heights. Is there a method to generate X, Y, and Z? Or is there a better function to achieve this? Thanks!
If you leave out X and Y, by default, plt.contour uses the array indices (in this case the range 0-1023 in both x and y).
To only draw a contour line at a given level, you can use levels=[0]. The colors= parameter can fix one or more colors. Optionally, you can draw a line on the colorbar to indicate the value of the level.
import matplotlib.pyplot as plt
import numpy as np
from scipy import ndimage # to smooth a test image
# create a test image with similar properties as the given one
np.random.seed(20221230)
distance = np.pad(np.random.randn(1001, 1001), (11, 11), constant_values=-0.02)
distance = ndimage.filters.gaussian_filter(distance, 100)
distance -= distance.min()
distance = distance / distance.max() * 0.78 - 0.73
plt.imshow(distance)
cbar = plt.colorbar()
level = 0
color = 'red'
plt.contour(distance, levels=[level], colors=color)
cbar.ax.axhline(level, color=color) # show the level on the colorbar
plt.show()
Reference: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contour.html
You can accomplish this by setting the [levels] parameter in contour([X, Y,] Z, [levels], **kwargs).
You can draw contour lines at the specified levels by giving an array that is in increasing order.
import matplotlib.pyplot as plt
import numpy as np
x = y = np.arange(-3.0, 3.0, 0.02)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X ** 2 - Y ** 2)
Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2)
Z3 = np.exp(-(X + 1) ** 2 - (Y + 1) ** 2)
Z = (Z1 - Z2 - Z3) * 2
fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation='gaussian',
origin='lower', extent=[-4, 4, -4, 4],
vmax=abs(Z).max(), vmin=-abs(Z).max())
plt.colorbar(im)
CS = ax.contour(X, Y, Z, levels=[0.9], colors='black')
ax.clabel(CS, fmt='%1.1f', fontsize=12)
plt.show()
Result (levels=[0.9]):

Buggy vectors in quiver plot (Gradient of of Voltage) with matplotlib

I edited some examples to make a simulation for the voltage superposition of 2 point charges and made a 3D surface plot, the code is the following:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
q1 = 2e-9
q2 = -2e-9
K = 9e9
#Charge1 position
x1 = 2.0
y1 = 4.0
#Charge2 position
x2 = 6.0
y2 = 4.0
x = np.linspace(0,8,50)
y = np.linspace(0,8,50)
x, y = np.meshgrid(x,y)
r1 = np.sqrt((x - x1)**2 + (y - y1)**2)
r2 = np.sqrt((x - x2)**2 + (y - y2)**2)
V = K*(q1/r1 + q2/r2)
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x, y, V, rstride=1, cstride=1, cmap=cm.rainbow,
linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
3D Surface
Now what I want to do is a contour plot with a vector (quiver) plot on top of it. I tried the following code, but I get a bunch of buggy vectors coming out of both charges, even the negative one:
fig2, ax2 = plt.subplots(1,1)
cp = ax2.contourf(x, y, V, cmap=cm.coolwarm)
fig2.colorbar(cp)
v,u = np.gradient(-V, 0.2, 0.2) #E = -∇V
ax2.quiver(x, y, u, v)
ax2.set_title("Point Charges")
plt.show()
Buggy vectors
I suspect that the long vectors are related to a division by zero. The vectors should come out of the positive charge and get into the negative one. But how would I go about fixing them? Thanks in advance.
Welcome to SO, very nice MWE. One option would be to exclude all vectors beyond a certain length by setting them to NaN. Here I use the 95th percentile.
r = np.sqrt(u**2 + v**2)
is_valid = r < np.percentile(r, 95)
u[~is_valid] = np.nan
v[~is_valid] = np.nan
x[~is_valid] = np.nan
y[~is_valid] = np.nan
fig2, ax2 = plt.subplots(1,1)
cp = ax2.contourf(x, y, V, cmap=cm.coolwarm)
fig2.colorbar(cp)
ax2.quiver(x, y, u, v)
ax2.set_title("Point Charges")
ax2.set_xlim(0, 8)
ax2.set_ylim(0, 8)
plt.show()

Find coordinate on curve

I have plotted curve created by a list with several values. How to find out the x-coordinate that correspond with y-coordinate 0.04400918? This value is not exactly included in the list that describes the curve. Thank you very much.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # 3d graph
from mpl_toolkits.mplot3d import proj3d # 3d graph
import matplotlib.pylab as pl
fig=pl.figure()
ax = Axes3D(fig)
x=[0.02554897, 0.02587839, 0.02623991, 0.02663096, 0.02704882, 0.02749103, 0.02795535, 0.02844018, 0.02894404, 0.02946527, 0.03000235]
y=[0.04739086, 0.0460989, 0.04481555, 0.04354088, 0.04227474, 0.04101689, 0.03976702, 0.03852497, 0.03729052, 0.0360633, 0.03484293]
z=[1.05764017e-18, 1.57788964e-18, 2.00281370e-18, 2.40500994e-18, 2.80239565e-18, 3.19420769e-18, 3.58001701e-18, 3.96024361e-18, 4.33484911e-18, 4.70364652e-18, 5.06672528e-18]
y_point=0.04400918
ax.plot3D(x,y,z)
plt.show()
Here is a specific resolution for your problem.
Some works have already been done for solving line-plane equation. This topic explains how to solve it. Even better, this snippet implements a solution.
For now, we only need to adapt it to our problem.
The first step is to find all the time the line is crossing the plan. To do that, we will iterate over the y dataset and collect all consecutive values when y_point is between them:
lines = []
for i in range(len(y) - 1):
if y[i] >= y_point and y_point >= y[i+1]:
lines.append([[x[i], y[i], z[i]], [x[i+1], y[i+1], z[i+1]]])
Then, for all of these lines, we will solve the intersection equation with the plane. We will use the function provided in sources above.
Finally, we will plot the results
Full code:
# Modules
import numpy as np
import matplotlib.pyplot as plt
# Data
x = [0.02554897, 0.02587839, 0.02623991, 0.02663096, 0.02704882, 0.02749103, 0.02795535, 0.02844018, 0.02894404, 0.02946527, 0.03000235]
y = [0.04739086, 0.0460989, 0.04481555, 0.04354088, 0.04227474, 0.04101689, 0.03976702, 0.03852497, 0.03729052, 0.0360633, 0.03484293]
z = [1.05764017e-18, 1.57788964e-18, 2.00281370e-18, 2.40500994e-18, 2.80239565e-18, 3.19420769e-18, 3.58001701e-18, 3.96024361e-18, 4.33484911e-18, 4.70364652e-18, 5.06672528e-18]
y_point = 0.04400918
# Source: https://rosettacode.org/wiki/Find_the_intersection_of_a_line_with_a_plane#Python
# Resolve intersection
def LinePlaneCollision(planeNormal, planePoint, rayDirection, rayPoint, epsilon=1e-6):
ndotu = planeNormal.dot(rayDirection)
if abs(ndotu) < epsilon:
raise RuntimeError("no intersection or line is within plane")
w = rayPoint - planePoint
si = -planeNormal.dot(w) / ndotu
Psi = w + si * rayDirection + planePoint
return Psi
# For all line, apply the solving process
def solveAllPoints(lines, y_point):
collision_points = []
for line in lines:
# Define plane
planeNormal = np.array([0, 1, 0]) # Plane normal (e.g. y vector)
planePoint = np.array([0, y_point, 0]) # Any point on the plane
# Define ray
rayDirection = line[1] - line[0] # Line direction
rayPoint = line[0] # Any point of the line
# Append point
collision_points.append(LinePlaneCollision(planeNormal, planePoint, rayDirection, rayPoint))
return collision_points
# Find all consecutive Y points crossing the plane.
# This function is only working for the given problem (intersection of the line
# with 1 plan defined by a normal vector = [0,1,0])
def getCrossingLines(y_point, x, y, z):
lines = []
for i in range(len(y) - 1):
if y[i] >= y_point and y_point >= y[i+1]:
lines.append([[x[i], y[i], z[i]], [x[i+1], y[i+1], z[i+1]]])
return np.array(lines)
# Get coordinates for drawing our plane
# Related topic: https://stackoverflow.com/questions/53115276/matplotlib-how-to-draw-a-vertical-plane-in-3d-figure
def getXYZPlane(x, y, z):
xs = np.linspace(min(x), max(x), 100)
zs = np.linspace(min(z), max(z), 100)
X, Z = np.meshgrid(xs, zs)
Y = np.array([y_point for _ in X])
return X, Y, Z
# Create plot
plt3d = plt.figure().gca(projection='3d')
ax = plt.gca()
# Draw data line
ax.plot3D(x,y,z)
# Plot plan
X, Y, Z = getXYZPlane(x, y, z)
ax.plot_surface(X, Y, Z)
# Draw crossing points (lines-planes)
lines = getCrossingLines(y_point, x, y , z)
for pt in solveAllPoints(lines, y_point):
ax.scatter(pt[0], pt[1], pt[2], color='green')
plt.show()
Output

Draw curves with triple colors and width by using matplotlib and LineCollection [duplicate]

The figure above is a great artwork showing the wind speed, wind direction and temperature simultaneously. detailedly:
The X axes represent the date
The Y axes shows the wind direction(Southern, western, etc)
The variant widths of the line were stand for the wind speed through timeseries
The variant colors of the line were stand for the atmospheric temperature
This simple figure visualized 3 different attribute without redundancy.
So, I really want to reproduce similar plot in matplotlib.
My attempt now
## Reference 1 http://stackoverflow.com/questions/19390895/matplotlib-plot-with-variable-line-width
## Reference 2 http://stackoverflow.com/questions/17240694/python-how-to-plot-one-line-in-different-colors
def plot_colourline(x,y,c):
c = plt.cm.jet((c-np.min(c))/(np.max(c)-np.min(c)))
lwidths=1+x[:-1]
ax = plt.gca()
for i in np.arange(len(x)-1):
ax.plot([x[i],x[i+1]], [y[i],y[i+1]], c=c[i],linewidth = lwidths[i])# = lwidths[i])
return
x=np.linspace(0,4*math.pi,100)
y=np.cos(x)
lwidths=1+x[:-1]
fig = plt.figure(1, figsize=(5,5))
ax = fig.add_subplot(111)
plot_colourline(x,y,prop)
ax.set_xlim(0,4*math.pi)
ax.set_ylim(-1.1,1.1)
Does someone has a more interested way to achieve this? Any advice would be appreciate!
Using as inspiration another question.
One option would be to use fill_between. But perhaps not in the way it was intended. Instead of using it to create your line, use it to mask everything that is not the line. Under it you can have a pcolormesh or contourf (for example) to map color any way you want.
Look, for instance, at this example:
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import interp1d
def windline(x,y,deviation,color):
y1 = y-deviation/2
y2 = y+deviation/2
tol = (y2.max()-y1.min())*0.05
X, Y = np.meshgrid(np.linspace(x.min(), x.max(), 100), np.linspace(y1.min()-tol, y2.max()+tol, 100))
Z = X.copy()
for i in range(Z.shape[0]):
Z[i,:] = c
#plt.pcolormesh(X, Y, Z)
plt.contourf(X, Y, Z, cmap='seismic')
plt.fill_between(x, y2, y2=np.ones(x.shape)*(y2.max()+tol), color='w')
plt.fill_between(x, np.ones(x.shape) * (y1.min() - tol), y2=y1, color='w')
plt.xlim(x.min(), x.max())
plt.ylim(y1.min()-tol, y2.max()+tol)
plt.show()
x = np.arange(100)
yo = np.random.randint(20, 60, 21)
y = interp1d(np.arange(0, 101, 5), yo, kind='cubic')(x)
dv = np.random.randint(2, 10, 21)
d = interp1d(np.arange(0, 101, 5), dv, kind='cubic')(x)
co = np.random.randint(20, 60, 21)
c = interp1d(np.arange(0, 101, 5), co, kind='cubic')(x)
windline(x, y, d, c)
, which results in this:
The function windline accepts as arguments numpy arrays with x, y , a deviation (like a thickness value per x value), and color array for color mapping. I think it can be greatly improved by messing around with other details but the principle, although not perfect, should be solid.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
x = np.linspace(0,4*np.pi,10000) # x data
y = np.cos(x) # y data
r = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [lambda x: 1-x/(2*np.pi), 0]) # red
g = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [lambda x: x/(2*np.pi), lambda x: -x/(2*np.pi)+2]) # green
b = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [0, lambda x: x/(2*np.pi)-1]) # blue
a = np.ones(10000) # alpha
w = x # width
fig, ax = plt.subplots(2)
ax[0].plot(x, r, color='r')
ax[0].plot(x, g, color='g')
ax[0].plot(x, b, color='b')
# mysterious parts
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
# mysterious parts
rgba = list(zip(r,g,b,a))
lc = LineCollection(segments, linewidths=w, colors=rgba)
ax[1].add_collection(lc)
ax[1].set_xlim(0,4*np.pi)
ax[1].set_ylim(-1.1,1.1)
fig.show()
I notice this is what I suffered.

Plotting Multiple Plots on a single figure from within a for loop - Python

I have reviewed the response to this question: How would I iterate over a list of files and plot them as subplots on a single figure?
But am none the wiser on how to achieve my goal. I would like to plot multiple data sets, with differing x axes, onto a single figure in Python. I have included a snippet of my code below, which performs an FFT on a dataset, then calculates 3 Butterworth filter outputs. Ideally I would like to have all plotted on a single figure, which I have attempted to achieve in the code below.
The for loop calculates the 3 Butterworth filter outputs, the code above - the FFT and the code directly below attempts to append the FFT curve and sqrt(0.5) line to the previously generated plots for display.
Any Direction or advice would be appreciated.
"""Performs a Fast Fourier Transform on the data specified at the base of the code"""
def FFT(col):
x = io2.loc[1:,'Time']
y = io2.loc[1:,col]
# Number of samplepoints
#N = 600
N = pd.Series.count(x)
N2 = int(N/2)
# sample spacing
#T = 1.0 / 800.0
T = 1/(io2.loc[2,'Time'] - io2.loc[1,'Time'])
#x = np.linspace(0.0, N*T, N)
#y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
yf = scipy.fftpack.fft(y)
xf = np.linspace(0.0, 1.0/(2.0*T), N2)
fig=plt.figure()
plt.clf()
i=1
for order in [3, 6, 9]:
ax=fig.add_subplot(111, label="order = %d" % order)
b, a = butter_lowpass(cutoff, fs, order=order)
w, h = freqz(b, a, worN=2000)
ax.plot((fs * 0.5 / np.pi) * w, abs(h))
i=i+1
ax4=fig.add_subplot(111, label='sqrt(0.5)', frame_on=False)
ax5=fig.add_subplot(111, label="FFT of "+col, frame_on=False)
ax4.plot([0, 0.5 * fs], [np.sqrt(0.5), np.sqrt(0.5)], '--')
ax5.plot(xf, 2.0/N * np.abs(yf[:N2]))
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain')
plt.grid(True)
plt.legend(loc='best')
#fig, ax = plt.subplots()
#ax.plot(xf, 2.0/N * np.abs(yf[:N2]), label="FFT of "+col)
plt.axis([0,5000,0,0.1])
#plt.xlabel('Frequency (Hz)')
#plt.ylabel('Amplitude (mm)')
#plt.legend(loc=0)
plt.show()
return
Kind Regards,
Here you can find a minimal example of how to plot multiple lines with different x and y datasets. You are recreating the plot every time you type add_subplot(111). Instead, you should call plot multiple times. I have added an example for a single plot with multiple lines, as well as an example for one subplot per line.
import numpy as np
import matplotlib.pyplot as plt
x1 = np.arange(0, 10, 1)
x2 = np.arange(3, 12, 0.1)
x3 = np.arange(2, 8, 0.01)
y1 = np.sin(x1)
y2 = np.cos(x2**0.8)
y3 = np.sin(4.*x3)**3
data = []
data.append((x1, y1, 'label1'))
data.append((x2, y2, 'label2'))
data.append((x3, y3, 'label3'))
# All lines in one plot.
plt.figure()
for n in data:
plt.plot(n[0], n[1], label=n[2])
plt.legend(loc=0, frameon=False)
# One subplot per data set.
cols = 2
rows = len(data)//2 + len(data)%2
plt.figure()
gs = plt.GridSpec(rows, cols)
for n in range(len(data)):
i = n%2
j = n//2
plt.subplot(gs[j,i])
plt.plot(data[n][0], data[n][1])
plt.title(data[n][2])
plt.tight_layout()
plt.show()

Resources