<<use>> and <<composition >> at the same time required? - uml

I have the following UML containing the class School which (in my example right now) can only have one TeacherRoom.
My Question now is what is the official notation for this UML or should i remove the <<use>> assosiation because it is obvious?
Obvious because i am saving a instance of TeacherRoom in my School instance?
I would define it like that:

The fact that you have attribute teacherRoom : TeacherRoom in class School implies that School is using TeacherRoom, so the ≪use≫-dependency is not needed.
You also have a composition association to TeacherRoom. This means that, in addition to the attribute, you have a second relationship with TeacherRoom. So you may remove either one.

According to my understanding of section 10.4 of UML 2.5.1 specification, Usage dependency decribes the fact that a given Component requires an Interface or Services.
So I would remove it, as this has nothing to do with the fact that a "School" is composed of "TeacherRoom".
My second point is your "teacherRoom" property which has more or less the same meaning than your composition so I would remove one of them (Property or Composition).

Since you wrote
can only have one [typo corrected by me] TeacherRoom.
you need to add a multiplicity 1 to the right of the association (and as commented and answered to remove the diamond). Also rather than an attribute in School you should use a role name teacherRoom at the association and make it an owned property by adding a dot.
Some additional remarks to composition: Composition is (my personal impression) something that causes more confusion than it actually helps building models (just look for questions asking about its semantic and/or look out for wrong usage of it). Even worse is the shared aggregation which caused (and causes) even more confusion. Now after many editions, UML 2.5 defines that hollow thingy as what it is: nothing. Just read the box on p. 110. So back to the filled one, the composite aggregation. Basically it's about lifetime of objects, so whether there's an owner of an object who is responsible of its lifetime. When you make a car composed of its wheels, that's obviously not right since the wheel will live on without being attached to the car. Only the car is no longer a car. But that will be expressed by attaching a multiplicity of 4 to the wheel. Any car with not exactly 4 wheels is no longer a car. No composition at all.
So where can you use composite aggregation then? I have only 2 applications in mind. One is for storage managent. Something that had been important in the early days of computing when dinosaurs like me fought along with hard disks at cupboard size that had 20 Megabytes! Only a few border cases still need indication for memory management. The second case would be security. Indication that something has to be deleted along with its parent. And that's still valid. But then this is the only real application for composite aggregation.

Related

Class diagram - confused about aggregation [duplicate]

Here I am, with another question about aggregation and association. I wanted to learn some basics of UML, so I started reading "UML distilled" by Martin Fowler. I read both chapters about classes, and there is one thing that I can't fully grasp I think, and that is aggregation vs association. In the book there is this quote:
In the pre-UML days, people were usually rather vague on what was aggregation and what was
association. Whether vague or not, they were always inconsistent with everyone else. As a result,
many modelers think that aggregation is important, although for different reasons. So the UML
included aggregation (Figure 5.3) but with hardly any semantics. As Jim Rumbaugh says, "Think of it
as a modeling placebo" [Rumbaugh, UML Reference].
As I understand from this quote and topics that I read on Stack Overflow it doesn't matter which one of those two relations I use, they mean basically the same, or is there any situation where the usage of aggregation instead of association would be justified and/or I could not change one to the other without changing the "meaning" of a class diagram?
I am asking this, because this book is from 2003 and some things could have changed during those few years.
Maybe this can help you, but i don't think you will find the perfect explanation:
The difference is one of implication. Aggregation denotes whole/part
relationships whereas associations do not. However, there is not
likely to be much difference in the way that the two relationships are
implemented. That is, it would be very difficult to look at the code
and determine whether a particular relationship ought to be
aggregation or association. For this reason, it is pretty safe to
ignore the aggregation relationship altogether. [Robert C. Martin | UML]
And an example for each situation:
a) Association is a relationship where all object have their own
lifecycle and there is no owner. Let’s take an example of Teacher and
Student. Multiple students can associate with a single teacher and
single student can associate with multiple teachers, but there is no
ownership between the objects and both have their own lifecycle. Both
can create and delete independently.
b) Aggregation is a specialized form of Association where all object have their own lifecycle but there is ownership and child
object can not belong to another parent object. Let’s take an example
of Department and teacher. A single teacher can not belong to
multiple departments, but if we delete the department, the teacher object
will not be destroyed. We can think about “has-a” relationship.[Maesh | GeeksWithBlogs]
Rumbaugh's statement is the most telling and Uncle Bob's good advice. As I've said elsewhere, Aggregation is semantically so weak as to offer nothing practically beneficial. It only has one valid corner case (acyclicity of recursive relationships) however few people know and understand that. So you end up having to point out in comments anyway.
I just don't use it. And have never felt any loss. Stick with simple binary associations and focus on what really matters - getting the cardinality and naming right. You'll get far more from that than trying to decide the undecidable association vs. aggregation.
hth.
I tend to use Aggregation to show a relation that is the same as a Composition with one big distinction: the containing class is NOT responsible for the life-cycle of the contained object. Typically, a (non-null) pointer or reference to the object-to-be-contained is passed to the containing class's constructor. The containing object, for the duration of its life-cycle, depends upon the contained object existing. The containing object cannot do its job (fully) without the contained object. This is my interpretation of the "Part/Whole" relationship implied by Aggregation.
This term often gets confused.
Aggregation and composition are some of the types of association. There is
hardly a difference between aggregations and associations during
implementation, and many will skip aggregation relations altogether in
their diagrams with association relation.
You can get the idea from this analogy.
Class:A(person) and Class:B(car) has association relation, if
Class:A has a Class:B declaration, and also Class:B(car) object is not essential to create a Class:A(person) object.
Class:A(car) and Class:B(tyre) has aggregation relation, if
Class:A has a Class:B declaration, and also Class:B(tyre) object is essential to create a Class:A(car) object.
Cheers!
In UML aggregation is under-defined and since they haven't got any clearly defined semantic.
A valid use-case of an aggregation is the encapsulation of a several classes, as stated in "Domain Driven Design" by Eric Evans.
E.g. a car has four wheels.
You might want to calculate the total amount of meters each wheel has driven, for each car.
This calculation is done by the car-entity, since it knows which wheels it has and you don't care which wheels belong to which car.
The car is the aggregation-root for all it's parts, like wheels, and you can't access the parts of a car from outside the aggregation, just the root.
So basically an aggregation encapsulates a set of classes which belong to each other.
They do not mean the same! I can put it in this way:
Association relationship: A class references another class. Actually it shows that a class is related to another class but they
don't necessarily have attributes to show this relationship... e.g
'Teacher' and 'Student' classes, although 'Teacher' class has no
attribute that refer to students, but we do know that in reality a
teacher do have students... And also 'School' class has 'teachers' and
'students' properties that now make those two classes related to each
other.
Aggregation relationship: A class contains another class. But if the container(ClassRoom) is destroyed, the contained(Chair) is not.
Actually the ClassRoom owns the Chair. Aggregation is a more stronger
relationship than the Association relationship.
Here is also a tutorial about it and the whole UML2.0 which explains everything easy and simple, you may find it useful: https://github.com/imalitavakoli/learn-uml2
TIP: Also let me mention that because the Association relationship exists between classes most of the times, we sometimes don't draw it to prevent unnecessary complexity.
Implementation wise there is not much of a difference but conceptually there is big difference: aggregations are used to express a hierarchy. When you work with a hierarchy of components there are certain type of operations you need to have in the root interface:
find subcomponents in the hierarchy
add/remove subcomponents to/from the hierarchy
change common attributes of all components
traverse the hierarchy recursively (Visitor pattern)
reconfigure the hierarchy and the links (associations) between the components
Most of these operations are not needed when dealing with associations.
To add, I would just suggest to download the UML specification from the OMG site: best reference and see p 110.
None indicates that the property has no aggregation semantics.
Shared indicates that the property has shared aggregation semantics. Precise semantics of shared aggregation varies by application area and modeler.
Composite indicates that the property is aggregated compositely, i.e., the composite object has responsibility for
the existence and storage of the composed objects (see the definition of parts in 11.2.3).

UML and Implementation: Associating Classes through IDs

I was recently studying an online course. it was recommended that to reduce coupling we could simply pass the ID from the customer object to the Order object. that way the Order did not have to have a full reference to the Customer class.
The idea certainly seems simple and why pass a whole object if you don't need all its attributes?
1) What do you think of this idea?
2) How would I express the relationship between the Customer class and the Order class in UML if only an ID is passed. This isn't just an example of aggregation is it? Doesn't composition and aggregation require more than just passing a value?
Thanks!
First of all you need to be clear about what UML actually is. On the one hand you have an idea and on the other side there is some code running on hardware. Ideally the latter supports the first in a way that brings added value to a user of the idea. Now, there are many possibilities to describe the way from idea to code. And UML is one of them. It is possible to describe each step on this way but for pragmatic reasons UML stops at the border of code, namely programming languages.
Now for you concrete question: Any object can be seen as an instance. That is some concrete memory partition with a fixed address. Programming languages realize instances by allocating memory and using the start address as reference. And since this reference does not change the object can be identified by its address. Clearly then, an association will just be the a pointer. And an association class will hold two (or more) such pointers.
Honestly, the very first time I started with OO I was also confused and thought that it's a waste of resource to pass those large objects. But since it's just a pointer it's really easy going.
Again, things can get more difficult if you need to persist objects. In that case you need an artificial key you can save along with the object and you will likely need tables to map artificial key to the concrete instance address.
The answer to this question depends on a number of factors, which I started listing in a comment attached to your question. I will assume that you are either using UML to create a Domain Model, or you are describing an implementation done using a statically typed language.
If you are using UML to create a Domain Model, you are obfuscating the semantics when you use an ID to "link" classes. Just draw and annotate the association and you're done.
If you are describing an implementation done using a statically typed language - types exist for a reason. Using generic IDs to link things means that the information that the system needs most become more indirect, and therefore more opaque (which is bad). In your case, the Order object still must acquire a typed reference to a Customer object to do anything with it.
For example, the Order may acquire a reference to the Customer by invoking a lookup by the ID, but it must cast the reference to an appropriate type to invoke anything on the Customer object. So you haven't reduced the coupling from the Order to the Customer. You just buried it somwhere else.

Who is the owner of a relationship?

According to UML specs every Element can have an owner. Whether he has/must have an owner is determined by method mustBeOwned(): Boolean, which by default is true (see 7.8 Classifier Descriptions in specs).
In cases when an element is completely enclosed by its owner (such as a class in a package) it is quite obvious.
However for relationships (normal, directed, generalization, …) I didn't find any specification. Is the "source" (for directed at least) also the owner?
Is it the first common owner in the ownership chain? So for example association between two classes in a same package, the owner of the association would be the package.
Or is it simply not defined and it can be whatever I want?
To be honest, the definition of terms in Superstructures is still very poor.
Looking closer it's even worse (citing from ptc 13-09-05).
Relationships (p. 15)
A Relationship is an Element that specifies some kind of relationship between other Elements. Descendants of Relationship provide semantics appropriate to the concept they represent.
Connector (p. 235)
A Connector specifies links that enables communication between two or more instances. In contrast to Associations, which specify links between any instance of the associated Classifiers, Connectors specify links between instances playing the connected parts only.
I wasn't aware that they made a difference between both. Appears to be quite picky.
Association (p. 206)
An Association classifies a set of tuples representing links between typed instances. An AssociationClass is both an Association and a Class.
No mentioning of Relationship as being a parent.
Now seeking for the truth about owner
owner (p. 37)
/owner : Element [0..1]{union} (opposite Element::ownedElement) The Element that owns this Element.
mustBeOwned (a bit down)
mustBeOwned() : Boolean
The query mustBeOwned() indicates whether Elements of this type must have an owner. Subclasses of Element that do not require an owner must override this operation.
So here one is stuck unless reading to
Association (p 209)
Ownership of Association ends by an associated Classifier may be indicated graphically by a small filled circle, which for brevity we will term a dot. The dot is to be drawn integral to the graphic path of the line, at the point where it meets the Classifier, inserted between the end of the line and the side of the node representing the Classifier. The diameter of the dot shall not exceed half the height of the aggregation diamond, and shall be larger than the width of the line. This avoids visual confusion with the filled diamond notation while ensuring that it can be distinguished from the line. The dot shows that the model includes a Property of the type represented by the Classifier touched by the dot. This Property is owned by the Classifier at the other end. In such a case it is normal to suppress the Property from the attributes compartment of the owning Classifier.
Answer?
Most likely (!) connectors do not have the mustBeOwned constraint and can be owned in which case you will see the dot that has been introduced with 2.5. Else they are probably not owned.
To my understanding, the relation is generally not owned by elements it connects. What is owned is the association (relationship) end's and corresponding attributes/properties. Section 6.4.2. of UML specification 2.4.1 clarified this much better than your linked 2.5 beta. I would suggest that you use the current official version of specs rather than the beta one. I find the 2.5 being kind of unintelligible, the table of contents looks very chaotic.
The Relationship itself exists independently, it has no owner. Except when stated otherwise by concrete type of relationship (as in case of Generalization).
Which brings me to the main point of my answer by question. Why do you need to know?
I have been reading and explaining the specification for years now, but never came across such a specific question, which moreover is relatively clearly stated in the specs.
I would recommend to look at concrete relations and search (Ctrl+F) for "owned" (an Association has more than a page of text on this very topic in detail starting on page 40 in 2.4.1).
I myself have been trying to figure out what can own an instance of Association. I am using 2.4.1. This appears to me to be a(nother) case of the standard not actually being usable.
I haven't looked at all of the specializations of Relationship. I have looked at Association. It inherits owner from Element. The property is noted as a derived union. I can't find any property of Association (or any of its antecedents) that subsets owner. That being the case, I don't see how Association can actually have an owner.
I think that it seems reasonable for a Package to own an association.
I am using a UML tool that certainly does initialize the value of owner for associations. I am programmatically interpreting models created in that tool and using them as input for other modeling tools that I am working on. The makers of the first tool obviously had to just make up / guess at things and now I have to decide whether what they did was actually rational and if I want to agree with their conclusions (which happen to allow Classifiers to own Associations, which I think is weird) or do something else. Thanks OMG. Grrrr.
I wonder if older versions of the spec were any more clear?

UML - association or aggregation (simple code snippets)

I drives me crazy how many books contradicts themselves.
Class A {} class B {void UseA(A a)} //some say this is an association,
no reference is held but communication is possible
Class A {} class B {A a;} //some say this is
aggregration, a reference is held
But many say that holding a reference is still just an association and for aggregation they use a list - IMHO this is the same, it it still a reference.
I am very confused, I would like to understand the problem.
E.g. here: http://aviadezra.blogspot.cz/2009/05/uml-association-aggregation-composition.html - what is the difference between Strong Association and Aggregation, in both cases the author uses a field to store the reference..
Another example:
This is said to be Association:
And this is said to be Aggregration:
public class Professor {
// ...
}
public class Department {
private List<Professor> professorList;
// ..
}
Again, what is the difference? It is a reference in both cases
This question has been, and will be, asked many times in many different variants, because many people, including many high-profile developers, are confused about the meaning of these terms, which have been defined in the UML. Since the question has been asked many times, it has also been answered many times. See, e.g. this answer. I'll try to summarize the UML definitions.
An association between two classes is not established via a method parameter, but rather via reference properties (class attributes), the range/type of which are the associated classes. If the type of a method parameter is a class, this does not establish an association, but a dependency relationship.
It's essential to understand the logical concept of associations first, before looking at how they are coded. An association between object types classifies relationships between objects of those types. For instance, the association Committee-has-ClubMember-as-chair, which is visualized as a connection line in the class diagram shown below, may classify the relationships FinanceCommittee-has-PeterMiller-as-chair, RecruitmentCommittee-has-SusanSmith-as-chair and AdvisoryCommittee-has-SarahAnderson-as-chair, where the objects PeterMiller, SusanSmith and SarahAnderson are of type ClubMember, and the objects FinanceCommittee, RecruitmentCommittee and AdvisoryCommittee are of type Committee.
An association is always encoded by means of reference properties, the range/type of which is the associated class. For instance, like so
class Committee { ClubMember chair; String name;}
In the UML, aggregation and composition are defined as special forms of associations with the intended meaning of classifying part-whole-relationships. In the case of aggregation, as opposed to composition, the parts of a whole can be shared with other wholes. This is illustrated in the following example of an aggregation, where a course can belong to many degree programs.
The defining characteristic of a composition is to have exclusive (or non-shareable) parts. A composition may come with a life-cycle dependency between the whole and its parts implying that when a whole is destroyed, all of its parts are destroyed with it. However, this only applies to some cases of composition, and not to others, and it is therefore not a defining characteristic. An example of a composition where the parts (components) can be detached from the whole (composite) and therefore survive its destruction, is the following:
See Superstructures 2.1.1:
An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most one composite at a time. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite. Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an element in one part of the graph will also result in the deletion of all elements of the subgraph below that element. Composition is represented by the isComposite attribute on the part end of the association being set to true.
Navigability means instances participating in links at runtime (instances of an association) can be accessed efficiently from instances participating in links at the other ends of the association. The precise mechanism by which such access is achieved is implementation specific. If an end is not navigable, access from the other ends may or may not be possible, and if it is, it might not be efficient. Note that tools operating on UML models are not prevented from navigating associations from non-navigable ends.
Your above examples are on different abstraction levels. Department/Course are concrete coding classes while Department/Professor are at some abstract business level. Though there is no good source (I know) explaining this fact, composition and aggregation are concepts you will use only on business level and almost never at coding level (exception below). When you are at code level you live much better with Association having role names on both sides. Roles themselves are a different(/redundant!) rendering of properties of a class that refer to the opposite class.
Aggregation as a strong binding between classes is used e.g. in database modeling. Here you can delete a master only if the aggregates have all been deleted previously (or vice vera: deleting the master will force deletion of the aggregates). The aggregate can not live on its own. The composition as in your example is (from my POV) a silly construct as it pretends to be some week aggregation. But that's simply nonsense. Then use an association. Only on a business level you can try to model (e.g.) machine parts as composite. On a concrete level a composition is a useless concept.
tl;dr;
If there is a relation between classes show it as simple association. Adding details like roles will aid when discussing domain details. Use of composition/aggregation is encouraged only when modeling on business level and dis-encouraged on code level.
I've written an article about the differences between UML Association vs Aggregation vs Composition based on the actual UML specification rather then interpretations of book authors.
The primary conclusion being that
In short, the Composition is a type of Association with real constraints and impact on development, whereas the Aggregation is purely a functional indication of the nature of the Association with no technical impact.
Navigability is a completely different property and independent of the AggregationKind.
For one thing, UML is a rich language, meaning there is more than one way to describe the same thing. That's one reason you find different ways described in different books (and conflicting answers on SO).
But a key issue is the huge disconnect between UML and source code. How a specific source code construct is represented in UML, and vice versa, is not part of the UML specification at all. To my knowledge, only one language (Java) has an official UML profile, and that's out of date.
So the representation of specific source-language constructs are left to the tool vendors, and therefore differ. If you intend to generate code from your model, you must follow the vendor's conventions. If, conversely, you wish to generate a model from existing source code, you get a model based on those same conventions. But if you transfer that model to a different tool (which is difficult at the best of times) and generate code out of that, you won't end up with the same code.
In language-and-tool-agnostic mode, my take on which relationships to use in which situations can be found here. One point there worth repeating is that I don't use undirected associations in source-code models, precisely because they have no obvious counterpart in actual code. If in the code class A has a reference to class B, and B also has one to A, then I draw two relationships instead.

UML aggregation vs association

Here I am, with another question about aggregation and association. I wanted to learn some basics of UML, so I started reading "UML distilled" by Martin Fowler. I read both chapters about classes, and there is one thing that I can't fully grasp I think, and that is aggregation vs association. In the book there is this quote:
In the pre-UML days, people were usually rather vague on what was aggregation and what was
association. Whether vague or not, they were always inconsistent with everyone else. As a result,
many modelers think that aggregation is important, although for different reasons. So the UML
included aggregation (Figure 5.3) but with hardly any semantics. As Jim Rumbaugh says, "Think of it
as a modeling placebo" [Rumbaugh, UML Reference].
As I understand from this quote and topics that I read on Stack Overflow it doesn't matter which one of those two relations I use, they mean basically the same, or is there any situation where the usage of aggregation instead of association would be justified and/or I could not change one to the other without changing the "meaning" of a class diagram?
I am asking this, because this book is from 2003 and some things could have changed during those few years.
Maybe this can help you, but i don't think you will find the perfect explanation:
The difference is one of implication. Aggregation denotes whole/part
relationships whereas associations do not. However, there is not
likely to be much difference in the way that the two relationships are
implemented. That is, it would be very difficult to look at the code
and determine whether a particular relationship ought to be
aggregation or association. For this reason, it is pretty safe to
ignore the aggregation relationship altogether. [Robert C. Martin | UML]
And an example for each situation:
a) Association is a relationship where all object have their own
lifecycle and there is no owner. Let’s take an example of Teacher and
Student. Multiple students can associate with a single teacher and
single student can associate with multiple teachers, but there is no
ownership between the objects and both have their own lifecycle. Both
can create and delete independently.
b) Aggregation is a specialized form of Association where all object have their own lifecycle but there is ownership and child
object can not belong to another parent object. Let’s take an example
of Department and teacher. A single teacher can not belong to
multiple departments, but if we delete the department, the teacher object
will not be destroyed. We can think about “has-a” relationship.[Maesh | GeeksWithBlogs]
Rumbaugh's statement is the most telling and Uncle Bob's good advice. As I've said elsewhere, Aggregation is semantically so weak as to offer nothing practically beneficial. It only has one valid corner case (acyclicity of recursive relationships) however few people know and understand that. So you end up having to point out in comments anyway.
I just don't use it. And have never felt any loss. Stick with simple binary associations and focus on what really matters - getting the cardinality and naming right. You'll get far more from that than trying to decide the undecidable association vs. aggregation.
hth.
I tend to use Aggregation to show a relation that is the same as a Composition with one big distinction: the containing class is NOT responsible for the life-cycle of the contained object. Typically, a (non-null) pointer or reference to the object-to-be-contained is passed to the containing class's constructor. The containing object, for the duration of its life-cycle, depends upon the contained object existing. The containing object cannot do its job (fully) without the contained object. This is my interpretation of the "Part/Whole" relationship implied by Aggregation.
This term often gets confused.
Aggregation and composition are some of the types of association. There is
hardly a difference between aggregations and associations during
implementation, and many will skip aggregation relations altogether in
their diagrams with association relation.
You can get the idea from this analogy.
Class:A(person) and Class:B(car) has association relation, if
Class:A has a Class:B declaration, and also Class:B(car) object is not essential to create a Class:A(person) object.
Class:A(car) and Class:B(tyre) has aggregation relation, if
Class:A has a Class:B declaration, and also Class:B(tyre) object is essential to create a Class:A(car) object.
Cheers!
In UML aggregation is under-defined and since they haven't got any clearly defined semantic.
A valid use-case of an aggregation is the encapsulation of a several classes, as stated in "Domain Driven Design" by Eric Evans.
E.g. a car has four wheels.
You might want to calculate the total amount of meters each wheel has driven, for each car.
This calculation is done by the car-entity, since it knows which wheels it has and you don't care which wheels belong to which car.
The car is the aggregation-root for all it's parts, like wheels, and you can't access the parts of a car from outside the aggregation, just the root.
So basically an aggregation encapsulates a set of classes which belong to each other.
They do not mean the same! I can put it in this way:
Association relationship: A class references another class. Actually it shows that a class is related to another class but they
don't necessarily have attributes to show this relationship... e.g
'Teacher' and 'Student' classes, although 'Teacher' class has no
attribute that refer to students, but we do know that in reality a
teacher do have students... And also 'School' class has 'teachers' and
'students' properties that now make those two classes related to each
other.
Aggregation relationship: A class contains another class. But if the container(ClassRoom) is destroyed, the contained(Chair) is not.
Actually the ClassRoom owns the Chair. Aggregation is a more stronger
relationship than the Association relationship.
Here is also a tutorial about it and the whole UML2.0 which explains everything easy and simple, you may find it useful: https://github.com/imalitavakoli/learn-uml2
TIP: Also let me mention that because the Association relationship exists between classes most of the times, we sometimes don't draw it to prevent unnecessary complexity.
Implementation wise there is not much of a difference but conceptually there is big difference: aggregations are used to express a hierarchy. When you work with a hierarchy of components there are certain type of operations you need to have in the root interface:
find subcomponents in the hierarchy
add/remove subcomponents to/from the hierarchy
change common attributes of all components
traverse the hierarchy recursively (Visitor pattern)
reconfigure the hierarchy and the links (associations) between the components
Most of these operations are not needed when dealing with associations.
To add, I would just suggest to download the UML specification from the OMG site: best reference and see p 110.
None indicates that the property has no aggregation semantics.
Shared indicates that the property has shared aggregation semantics. Precise semantics of shared aggregation varies by application area and modeler.
Composite indicates that the property is aggregated compositely, i.e., the composite object has responsibility for
the existence and storage of the composed objects (see the definition of parts in 11.2.3).

Resources