Unable to read MS SQL table using pyspark in jupyter notebook? - python-3.x

import os
import sys
spark_path = 'C:/opt/spark/spark-2.4.1-bin-hadoop2.7'
os.environ['SPARK_HOME'] = spark_path
os.environ['HADOOP_HOME'] = spark_path
sys.path.append(spark_path + "/bin")
sys.path.append(spark_path + "/python")
sys.path.append(spark_path + "/python/pyspark/")
sys.path.append(spark_path + "/python/lib")
sys.path.append(spark_path + "/python/lib/pyspark.zip")
sys.path.append(spark_path + "/python/lib/py4j-0.9-src.zip")
from pyspark.sql import SparkSession
spark = SparkSession\
.builder\
.master('local[*]')\
.appName('Connection-Test')\
.config('spark.driver.extraClassPath', 'C:/Users/sqljdbc_4.2.8112.200_enu/sqljdbc_4.2/enu/jre8/sqljdbc42.jar')\
.config('spark.executor.extraClassPath', 'C:/Users/sqljdbc_4.2.8112.200_enu/sqljdbc_4.2/enu/jre8/sqljdbc42.jar')\
.getOrCreate()
sqlsUrl = 'jdbc:sqlserver://ip:port;database=dbname'
qryStr = """ (
SELECT *
FROM Table
) """
spark.read.format('jdbc')\
.option('url',sqlsUrl)\
.option('driver', 'com.microsoft.sqlserver.jdbc.SQLServerDriver')\
.option('dbtable', qryStr )\
.option("user", "user") \
.option("password", "password") \
.load().show()
An error occurred while calling o50.load. : com.microsoft.sqlserver.jdbc.SQLServerException: Incorrect syntax near the keyword 'WHERE'. at com.microsoft.sqlserver.jdbc.SQLServerException.makeFromDatabaseError(SQLServerException.java:217)

Try adding "as Table_Name" to the end of your query
qryStr = """ (
SELECT *
FROM Table
) as Table """

Related

How to pass SparkSession object to Kafka-Spark streaming's foreachBatch method?

I have a python script loader.py which consists of main class that creates a sparkSession object as given below and calls various methods to perform different actions.
from utils import extract_kafka_data, do_some_transformation
def main():
try:
spark = SparkSession.builder.appName(config['kafka_transformations']).enableHiveSupport().getOrCreate()
kafka_df = extract_kafka_data(spark=spark, config=config, topic_name=topic_name)
do_some_transformation(kafka_df, spark)
except Exception as exc:
print(f'Failed with Exception:{exc}')
traceback.print_exc()
print('Stopping the application')
sys.exit(1)
if __name__ == '__main__':
main()
The methods extract_kafka_data, do_some_transformation are present in a different python script: utils.py
There are so many other methods inside my utils.py file that perform various transformations. Below are the couple of methods of this scenario that needs some addressing.
def extract_kafka_data(spark: SparkSession, config: dict, topic_name: str):
jass_config = config['jaas_config'] + " oauth.token.endpoint.uri=" + '"' + config['endpoint_uri'] + '"' + " oauth.client.id=" + '"' + config['client_id'] + '"' + " oauth.client.secret=" + '"' + config['client_secret'] + '" ;'
stream_df = spark.readStream \
.format('kafka') \
.option('kafka.bootstrap.servers', config['kafka_broker']) \
.option('subscribe', topic_name) \
.option('kafka.security.protocol', config['kafka_security_protocol']) \
.option('kafka.sasl.mechanism', config['kafka_sasl_mechanism']) \
.option('kafka.sasl.jaas.config', jass_config) \
.option('kafka.sasl.login.callback.handler.class', config['kafka_sasl_login_callback_handler_class']) \
.option('startingOffsets', 'earliest') \
.option('fetchOffset.retryIntervalMs', config['kafka_fetch_offset_retry_intervalms']) \
.option('fetchOffset.numRetries', config['retries']) \
.option('failOnDataLoss', 'False') \
.option('checkpointLocation', checkpoint_location) \
.load() \
.select(from_json(col('value').cast('string'), schema).alias("json_dta")).selectExpr('json_dta.*')
return stream_df
def do_some_transformation(spark: SparkSession, kafka_df: Dataframe):
kafka_df.writeStream \
.format('kafka') \
.foreachBatch(my_transformation_method) \
.option('checkpointLocation', checkpoint_location) \
.trigger(processingTime='10 minutes') \
.start()
.awaitTermination()
def my_transformation_method(kafka_df: Dataframe, batch_id: int):
base_delta = DeltaTable.forPath(spark, config['delta_path'])
base_delta.alias("base") \
.merge(source=kafka_df.alias("inc"), condition=build_update_condition(config['merge_keys'], config['inc_keys'])) \
.whenMatchedUpdateAll() \
.whenNotMatchedInsertAll() \
.execute()
The problem I am facing here is with the method: my_transformation_method.
Inside method: my_transformation_method I am performing a merge of my kafka dataframe with my delta table.
In order to read the base table data, I need to run this statement:
base_delta = DeltaTable.forPath(spark, config['delta_path'])
But the problem here is that the method: my_transformation_method which is being called by foreachBatch in do_some_transformation method can only receive two method arguments: 1. Dataframe 2. batch_id as per the syntax of spark streaming.
I can make the spark session object global but I don't want to do it as it doesn't appear to be the standard way.
Is there any way I can make the sparkSession object spark available to method my_transformation_method when I call it from do_some_transformation ?
Any help is much appreciated.
DataFrame API ptovides sparkSession method that can be used:
spark = kafka_df.sparkSession()

Execute PySpark code from a Java/Scala application

Is there a way to execute PySpark code from a Java/Scala application on an existing SparkSession?
Specifically, given a PySpark code that receives and returns pyspark dataframe, is there a way to submit it to Java/Scala SparkSession and get back the output dataframe:
String pySparkCode = "def my_func(input_df):\n" +
" from pyspark.sql.functions import *\n" +
" return input_df.selectExpr(...)\n" +
" .drop(...)\n" +
" .withColumn(...)\n"
SparkSession spark = SparkSession.builder().master("local").getOrCreate()
Dataset inputDF = spark.sql("SELECT * from my_table")
outputDf = spark.<SUBMIT_PYSPARK_METHOD>(pySparkCode, inputDF)

How to direct stream(kafka) a JSON file in spark and convert it into RDD?

Wrote a code that direct streams(kafka) word count when file is given(in producer)
code :
from pyspark import SparkConf, SparkContext
from operator import add
import sys
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
## Constants
APP_NAME = "PythonStreamingDirectKafkaWordCount"
##OTHER FUNCTIONS/CLASSES
def main():
sc = SparkContext(appName="PythonStreamingDirectKafkaWordCount")
ssc = StreamingContext(sc, 2)
brokers, topic = sys.argv[1:]
kvs = KafkaUtils.createDirectStream(ssc, [topic], {"metadata.broker.list": brokers})
lines = kvs.map(lambda x: x[1])
counts = lines.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a+b)
counts.pprint()
ssc.start()
ssc.awaitTermination()
if __name__ == "__main__":
main()
Need to convert the input json file to spark Dataframe using Dstream.
This should work:
Once you have your variable containing the TransformedDStream kvs, you can just create a map of DStreams and pass the data to a handler function like this:
data = kvs.map( lambda tuple: tuple[1] )
data.foreachRDD( lambda yourRdd: readMyRddsFromKafkaStream( yourRdd ) )
You should define the handler function that should create the dataframe using your JSON data:
def readMyRddsFromKafkaStream( readRdd ):
# Put RDD into a Dataframe
df = spark.read.json( readRdd )
df.registerTempTable( "temporary_table" )
df = spark.sql( """
SELECT
*
FROM
temporary_table
""" )
df.show()
Hope it helps my friends :)

Why my spark streaming app does not show any out put

This is my follow up question from my earlier stack overflow question ,for which I did not get a response
I have tried writing this ,which does not throw up any error but it does not show any out put
My goal is to evaluate the Dstream objects with historical data RDD ,I could not
find any example for pyspark like this ( checking streaming RDD with static RDD
created before hand ) .Appreciate your response . Thanks
"""
Created on Thu May 05 16:23:15 2016
#author: bghosh
"""
import re
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.sql import SQLContext,functions as func,Row
sc = SparkContext("local[2]", "realtimeApp")
sqlContext = SQLContext(sc)
ssc = StreamingContext(sc,10)
files = ssc.textFileStream("hdfs://RealTimeInputFolder/")
########Lets get the data from the db which is relavant for streaming ###
driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
dataurl = "jdbc:sqlserver://devserver:1433"
db = "devDB"
table = "stream_helper"
credential = "dev_credential"
########basic data for evaluation purpose ########
#base_data = sqlContext.read.format("jdbc").options(driver=driver,url=dataurl,database=db,user=credential,password=credential,dbtable=table).load()
base_data = sqlContext.read.format("jdbc").options(driver=driver,url=dataurl,database=db,user=credential,password=credential,dbtable=table).load()
base_data.registerTempTable("base_data")
######
files_count = files.flatMap(lambda file: file.split( ))
#pattern = '(TranAmount=Decimal.{2})(.[0-9]*.[0-9]*)(\\S+ )(TranDescription=u.)([a-zA-z\\s]+)([\\S\\s]+ )(dSc=u.)([A-Z]{2}.[0-9]+)'
tranfiles = "wasb://vanspark01#vanspark01.blob.core.windows.net/RealTimeInputFolder01/"
def getSqlContextInstance(sparkContext):
if ('sqlContextSingletonInstance' not in globals()):
globals()['sqlContextSingletonInstance'] = SQLContext(sparkContext)
return globals()['sqlContextSingletonInstance']
def preparse(logline):
#match = re.search(pattern,logline)
pre = logline.split(",")
return(
Row(
Customer_id = pre[-1],
trantype = pre[-4],
amount = float(pre[-5]))
)
def parse():
parsed_tran = ssc.textFileStream(tranfiles).map(preparse)
#success = parsed_tran.filter(lambda s: s[1] == 1).map(lambda x:x[0])
#fail = parsed_tran.filter(lambda s:s[1] == 0).map(lambda x:x[0])
"""if fail.count() > 0:
print "no of non parsed file : %d",fail.count()
"""
return parsed_tran#success
def check_historic(rdd):
#checking with the historical table #
try:
streamSqlcontext = getSqlContextInstance(rdd)
stream_df = streamSqlcontext.createDataFrame(rdd)
stream_df.registerTempTable("stream_df")
result_data_frame = streamSqlcontext.sql("select * from stream_df LEFT OUTER JOIN base_data on stream_df.Customer_id= base_data.Customer_id" )
result_data_frame.show()
except:
pass
#return result_data_frame.rdd
success = parse()
success.foreachRDD(check_historic)
ssc.start()
ssc.awaitTermination()

Why is my Spark streaming app so slow?

I have a cluster with 4 nodes: 3 Spark nodes and 1 Solr node. My CPU is 8 core, my memory is 32 GB, disc space is SSD. I use cassandra as my database. My data amount is 22GB after 6 hours and I now have around 3,4 Million rows, which should be read in under 5 minutes.
But already it can't complete the task in this amount of time. My future plan is to read 100 Million rows in under 5 minutes. I am not sure what I can increase or do better to achieve this result now as well as to achieve my future goal. Is that even possible or would it be better to use spark for the real time analysis and use for example hadoop for longer tail data (older then 1 day or a couple of hours)?
Thanks a lot!
Here is my Spark app code:
import sys
import json
from pyspark import SparkContext, SparkConf
from pyspark.streaming import StreamingContext
from pyspark.sql import SQLContext, Row
from pyspark.streaming.kafka import KafkaUtils
from datetime import datetime, timedelta
from dateutil.parser import parse
from cassandra.cluster import Cluster
import pytz
from dateutil.tz import tzutc
tz = pytz.timezone('')
appname = str(sys.argv[1])
source = str(sys.argv[2])
cluster = Cluster(['localhost']);
session_statis = cluster.connect('keyspace')
def read_json(x):
try:
y = json.loads(x)
except:
y = 0
return y
def TransformInData(x):
try:
body = json.loads(x['body'])
return (body['articles'])
except:
return 0
def axesTransformData(x):
try:
body = json.loads(x['body'])
return (body)
except:
return 0
def storeDataToCassandra(rdd):
rdd_cassandra =rdd.map(lambda x:(x[0],(x[0],x[1]['thumbnail'], x[1]['title'], x[1]['url'], datetime.strptime(parse(x[1]['created_at']).strftime('%Y-%m-%d %H:%M:%S'), "%Y-%m-%d %H:%M:%S"),source, x[1]['category'] if x[1]['category'] else '', x[1]['channel'],x[1]['genre']))) \
.subtract(articles)
rdd_article = rdd_cassandra.map(lambda x:Row(id=x[1][0],source=x[1][5],thumbnail=x[1][1],title=x[1][2],url=x[1][3],created_at=x[1][4],category=x[1][6],channel=x[1][7],genre=x[1][8]))
rdd_schedule = rdd_cassandra.map(lambda x:Row(source=x[1][5],type='article',scheduled_for=x[1][4]+timedelta(minutes=5),id=x[1][0]))
rdd_article_by_created_at = rdd_cassandra.map(lambda x:Row(source=x[1][5],created_at=x[1][4],article=x[1][0]))
rdd_article_by_url = rdd_cassandra.map(lambda x:Row(url=x[1][3],article=x[1][0]))
if rdd_article.count()>0:
result_rdd_article = sqlContext.createDataFrame(rdd_article)
result_rdd_article.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
if rdd_schedule.count()>0:
result_rdd_schedule = sqlContext.createDataFrame(rdd_schedule)
result_rdd_schedule.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
if rdd_article_by_created_at.count()>0:
result_rdd_article_by_created_at = sqlContext.createDataFrame(rdd_article_by_created_at)
result_rdd_article_by_created_at.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
if rdd_article_by_url.count()>0:
result_rdd_article_by_url = sqlContext.createDataFrame(rdd_article_by_url)
result_rdd_article_by_url.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
#
def axesStoreToCassandra(rdd):
axes_rdd = rdd.map(lambda x:Row(article=x[1]['id'],at=datetime.now(),comments=x[1]['comments'],likes=x[1]['attitudes'],reads=0,shares=x[1]['reposts']))
if axes_rdd.count()>0:
result_axes_rdd = sqlContext.createDataFrame(axes_rdd)
result_axes_rdd.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
def joinstream(rdd):
article_channels = articlestat.join(channels).map(lambda x:(x[1][0]['id'],{'id':x[1][0]['id'],'thumbnail':x[1][0]['thumbnail'],'title':x[1][0]['title'],'url':x[1][0]['url'],'created_at':x[1][0]['created_at'],'source':x[1][0]['source'],'genre':x[1][0]['genre'],'category':x[1][1]['category'],'author':x[1][1]['author']}))
speed_rdd = axes.map(lambda x:(x.article,[[x.at,x.comments,x.likes,x.reads,x.shares]])) \
.reduceByKey(lambda x,y:x+y) \
.map(lambda x:(x[0],sorted(x[1],key=lambda y:y[0],reverse = True)[0],sorted(x[1],key=lambda y:y[0],reverse = True)[1]) if len(x[1])>=2 else (x[0],sorted(x[1],key=lambda y:y[0],reverse = True)[0],[sorted(x[1],key=lambda y:y[0],reverse = True)[0][0]-timedelta(seconds=300),0,0,0,0])) \
.filter(lambda x:(x[1][0]-x[2][0]).seconds>0) \
.map(lambda x:(x[0],{'id':x[0],'comments':x[1][1],'likes':x[1][2],'reads':x[1][3],'shares':x[1][4],'speed':int(5*288*((x[1][4]-x[2][4])/((x[1][0]-x[2][0]).seconds/60.0)))})) \
.filter(lambda x:x[1]['speed']>=0) \
.filter(lambda x:x[1]['shares']>0)
statistics = article_channels.join(speed_rdd) \
.map(lambda x:{'id':x[1][0]['id'],'thumbnail':x[1][0]['thumbnail'],'title':x[1][0]['title'],'url':x[1][0]['url'],'created_at':x[1][0]['created_at'],'source':x[1][0]['source'],'category':x[1][0]['category'],'author':x[1][0]['author'],'genre':x[1][0]['genre'],'comments':x[1][1]['comments'],'likes':x[1][1]['likes'],'reads':x[1][1]['reads'],'shares':x[1][1]['shares'],'speed':x[1][1]['speed']})
timeone=datetime.now()-timedelta(hours=1)
timethree = datetime.now()-timedelta(hours=3)
timesix = datetime.now()-timedelta(hours=6)
timetwelve = datetime.now()-timedelta(hours=12)
timetwentyfour = datetime.now()-timedelta(hours=24)
result1 = statistics.filter(lambda x:x['created_at']+timedelta(hours=8)>=timeone).map(lambda x:Row(timespan='1',source=source,id=x['id'],title=x['title'],thumbnail=x['thumbnail'],url=x['url'],created_at=x['created_at']+timedelta(hours=8),genre=x['genre'],reads=0,likes=x['likes'],comments=x['comments'],shares=x['shares'],speed=x['speed'],category=x['category'],author=x['author']))
result3 = statistics.filter(lambda x:x['created_at']+timedelta(hours=8)>=timethree and x['created_at']+timedelta(hours=8)<=timeone).map(lambda x:Row(timespan='3',source=source,id=x['id'],title=x['title'],thumbnail=x['thumbnail'],url=x['url'],created_at=x['created_at']+timedelta(hours=8),genre=x['genre'],reads=0,likes=x['likes'],comments=x['comments'],shares=x['shares'],speed=x['speed'],category=x['category'],author=x['author']))
result6 = statistics.filter(lambda x:x['created_at']+timedelta(hours=8)>=timesix and x['created_at']+timedelta(hours=8)<=timethree).map(lambda x:Row(timespan='6',source=source,id=x['id'],title=x['title'],thumbnail=x['thumbnail'],url=x['url'],created_at=x['created_at']+timedelta(hours=8),genre=x['genre'],reads=0,likes=x['likes'],comments=x['comments'],shares=x['shares'],speed=x['speed'],category=x['category'],author=x['author']))
result12 = statistics.filter(lambda x:x['created_at']+timedelta(hours=8)>=timetwelve and x['created_at']+timedelta(hours=8)<=timesix).map(lambda x:Row(timespan='12',source=source,id=x['id'],title=x['title'],thumbnail=x['thumbnail'],url=x['url'],created_at=x['created_at']+timedelta(hours=8),genre=x['genre'],reads=0,likes=x['likes'],comments=x['comments'],shares=x['shares'],speed=x['speed'],category=x['category'],author=x['author']))
result24 = statistics.filter(lambda x:x['created_at']+timedelta(hours=8)>=timetwentyfour and x['created_at']+timedelta(hours=8)<=timetwelve).map(lambda x:Row(timespan='24',source=source,id=x['id'],title=x['title'],thumbnail=x['thumbnail'],url=x['url'],created_at=x['created_at']+timedelta(hours=8),genre=x['genre'],reads=0,likes=x['likes'],comments=x['comments'],shares=x['shares'],speed=x['speed'],category=x['category'],author=x['author']))
if result1.count()>0:
session_statis.execute('DELETE FROM tablename WHERE source = %s and timespan= %s', (source,'1'))
resultschema1 = sqlContext.createDataFrame(result1)
resultschema1.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
if result3.count()>0:
session_statis.execute('DELETE FROM tablename WHERE source = %s and timespan= %s', (source,'3'))
resultschema3 = sqlContext.createDataFrame(result3)
resultschema3.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
if result6.count()>0:
session_statis.execute('DELETE FROM tablename WHERE source = %s and timespan= %s', (source,'6'))
resultschema6 = sqlContext.createDataFrame(result6)
resultschema6.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
if result12.count()>0:
session_statis.execute('DELETE FROM tablename WHERE source = %s and timespan= %s', (source,'12'))
resultschema12 = sqlContext.createDataFrame(result12)
resultschema12.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
if result24.count()>0:
session_statis.execute('DELETE FROM tablename WHERE source = %s and timespan= %s', (source,'24'))
resultschema24 = sqlContext.createDataFrame(result24)
resultschema24.write.format("org.apache.spark.sql.cassandra").options(table="tablename", keyspace = "keyspace").save(mode ="append")
conf = SparkConf().setAppName(appname)
sc = SparkContext(conf=conf)
ssc = StreamingContext(sc,30)
sqlContext = SQLContext(sc)
channels = sc.cassandraTable("keyspace","tablename").map(lambda x:(x.id,{'author':x.name,'category':x.category}))
articles = sc.cassandraTable('keyspace','tablename').map(lambda x:(x.id,(x.id,x.thumbnail,x.title,x.url,x.created_at+timedelta(hours=8),source,x.category,x.channel,x.genre)))
articlestat = sc.cassandraTable('keyspace','tablename').map(lambda x:(x.channel,{'id':x.id,'thumbnail':x.thumbnail,'title':x.title,'url':x.url,'created_at':x.created_at,'source':x.source,'category':x.category,'channel':x.channel,'genre':x.genre}))
axes = sc.cassandraTable('keyspace','tablename')
topic = 'topic1'
kafkaParams = {"metadata.broker.list": "localhost:9092"}
article_stream = KafkaUtils.createDirectStream(ssc, [topic], kafkaParams)
article_join_stream=article_stream.map(lambda x:read_json(x[1])).filter(lambda x: x!=0).map(lambda x:TransformInData(x)).filter(lambda x: x!=0).flatMap(lambda x:(a for a in x)).map(lambda x:(x['id'].encode("utf-8") ,x))
article_join_stream.transform(storeDataToCassandra).pprint()
axes_topic = 'topic2'
axes_stream = KafkaUtils.createDirectStream(ssc, [axes_topic], kafkaParams)
axes_join_stream = axes_stream.map(lambda x:read_json(x[1])).filter(lambda x: x!=0).map(lambda x:axesTransformData(x)).filter(lambda x: x!=0).flatMap(lambda x:(a for a in x)).map(lambda x:(str(x['id']),x))
axes_join_stream.transform(axesStoreToCassandra).pprint()
statistics = article_join_stream.map(lambda x:(x[0])).window(15*60,15*60)
statistics.transform(joinstream).pprint()
ssc.start()
EDIT:
This is the stage that seems to consume most time. Any thoughts on that?
At first glance it seems that you just start your application with "spark-submit <your application>"
This means you are using the default allocation of memory and CPU's to your application (which is about 1cpu and 512MB of ram in most default cases)
This is assuming you are using YARN since you don't provide info on this.
Start your application with the appropriate resources and you'll see improvements.
Edit:
I see you are using a lot of lambdas, those need to be serialized.
Do know that when using objects you are passing around the full object every time.
I.E. you are using the full object this.value and not just value.
To fix this, you could use a local variable _value = this.value and use that to proceed.
This might provide you with a speedup.

Resources